Chứng minh rằng : Bán kính đường tròn ngoại tiếp của hai tam giác bằng nhau thì bằng nhau.
Chứng minh rằng : Bán kính đường tròn ngoại tiếp của hai tam giác bằng nhau thì bằng nhau.
Cho H là trực tâm của tam giác ABC.
a) Gọi H' là điểm đối xứng của h qua AC. Chứng minh rằng H' nằm trên đường tròn ngoại tiếp tam giác ABC.
b) Chứng minh các đường tròn ngoại tiếp các tam giác AHB, BHC, CHA có bán kính bằng nhau.
a: Gọi D là giao của AC và HH'
=>HD=H'D
=>ΔAHH' cân tại A
=>góc AHH'=góc AHD=góc ACB
=>AH'CB là tứ giác nội tiếp
gọi H là trực tâm của tam giác không vuông ABC . Chứng minh rằng bán kính các đường tròn ngoại tiếp các tam giác ABC , HBC . HCA . HAB bằng nhau
Các đường cao AM, BN của tam giác ABC cắt nhau tại H. Các đường cao ấy kéo dài cắt đường tròn ngoại tiếp tam giác ABC tại D và E.
Chứng minh rằng
a) ABMNlaf tứ giác nội tiếp
b) CD = CE
c) Các đường tròn ngoại tiếp các tam giác ABC và AHC có bán kính bằng nhau
Chứng minh rằng tỉ số hai bán kính của hai đường tròn ngoại tiếp hai tam giác đồng dạng bằng tỉ số đồng dạng
AB/sinC=2R
A'B'/sinC'=2R'
mà AB/A'B'=k
và goc C=góc C'
nên 2R/2R'=AB/A'B'=k
=>R/R'=k(Đpcm)
Cho tam giác ABC cân đỉnh A, ^A=α, AB=m, D là một điểm trên cạnh BC sao cho BC=3BD
a) Tính BC, AD
b) Chứng tỏ rằng đường tròn ngoại tiếp các tam giác ABD, ACD là bằng nhau. Tính cosα để bán kính chúng bằng 1/2 bán kính R của đường tròn ngoại tiếp tam giác ABC
Chứng minh rằng : Nếu 2 tam giác đồng dạng thì tỉ số 2 bán kính đường tròn ngoại tiếp bằng tỉ số đồng dạng
Chứng minh rằng : Nếu 2 tam giác đồng dạng thì tỉ số 2 bán kính đường tròn ngoại tiếp bằng tỉ số đồng dạng
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O, đường cao BH và CK lần lượt các đường tròn tại E và F
a) Chứng minh rằng tứ giác BKHC nội tiếp
b) Chứng minh OA vuông góc với EF và EF song song với HK
c) Gọi I là giao điểm của BH và CK. Chứng minh rằng bán kính đường tròn ngoại tiếp tam giác AIB bằng bán kính đường tròn ngoại tiếp tam giác BIC
Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O;R)$. Hai đường cao $BD$, $CE$ của tam giác $ABC$ cắt nhau tại $H$. Các tia $BD$, $CE$ cắt đường tròn $(O;R)$ lần lượt tại điểm thứ hai là $P$, $Q$.
1. Chứng minh rằng tứ giác $BCDE$ nội tiếp và cung $AP$ bằng cung $AQ$.
2. Chứng minh $E$ là trung điểm của $HQ$ và $OA \perp DE $.
3. Cho $\widehat{CAB} = 60^{\circ}$ , $R = 6$ cm. Tính bán kính đường tròn ngoại tiếp tam giác $AED$.
1.
Chứng minh được \widehat{CEB} = \widehat{BDC} = 90^{\circ}.
Suy ra 4 điểm B,E, D, C cùng thuộc đường tròn đường kính CB nên tứ giác BCDE nội tiếp.
Có tứ giác BCDE nội tiếp nên \widehat{DCE} = \widehat{DBE} (2 góc nội tiếp cùng chắn cung DE) hay \widehat{ACQ} = \widehat{ABP}.
Trong đường tròn tâm (O), ta có \widehat{ACQ} là góc nội tiếp chắn cung AQ và \widehat{ABP} nội tiếp chắn cung AP
\Rightarrow \overset{\frown}{AQ}=\overset{\frown}{AP}.
2.
(O) có \overset{\frown}{AQ}=\overset{\frown}{AP} nên \widehat{ABP} = \widehat{ABQ} hay \widehat{HBE} = \widehat{QBE}.
Ta chứng minh được BE vừa là đường cao, vừa là phân giác của tam giác HBQ nên E là trung điểm của HQ.
Chứng minh tương tự D là trung điểm của HP \Rightarrow DE là đường trung bình của tam giác HPQ \Rightarrow DE // PQ (1).
Do \overset{\frown}{AQ}=\overset{\frown}{AP} nên A là điểm chính giữa cung PQ \Rightarrow OA \perp PQ (2).
Từ (1) và (2) suy ra OA \perp DE.
3.
Kẻ đường kính CF của đường tròn tâm (O), chứng minh tứ giác ADHE nội tiếp đường tròn đường kính AH.
Chứng minh tứ giác AFBH là hình bình hành, suy ra BF=AH.
Trong đường tròn (O) có \widehat{CAB} = \widehat{CFB} = 60^{\circ} (2 góc nội tiếp cùng chắn cung BC). Chỉ ra tam giác BCF vuông tại B và áp dụng hệ thức giữa cạnh và góc ta được BF=CF. \cos 60^{\circ} =R=6 cm.
Đường tròn ngoại tiếp tứ giác ADHE cũng là đường tròn ngoại tiếp tam giác ADE.
Gọi r là bán kính đường tròn ngoại tiếp tam giác ADE.
Suy ra 2r=AH=BF=6 cm.
Vậy r=3 cm.