Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Thiên Hương
Xem chi tiết
Nobi Nobita
18 tháng 4 2020 lúc 16:13

\(E=5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x+105\)

\(=\left(5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x\right)+105\)

\(=5x\left(x^6+2x^5-4x^4-7x^3+4x^2-x+8\right)+105\)

Thay \(x^6+2x^5-4x^4-7x^3+4x^2-x+8=0\)vào đa thức ta được:

\(E=5x.0+105=105\)

Khách vãng lai đã xóa
Võ Thiên Hương
Xem chi tiết
NoName.155774
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2021 lúc 22:59

Bài 2: 

a: Ta có: \(x^2+4x+7\)

\(=x^2+4x+4+3\)

\(=\left(x+2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-2

Lưu Thị Nam Giang
Xem chi tiết
vũ thị ánh dương
Xem chi tiết
Đặng Nguyễn Ngọc Thương
Xem chi tiết
Nguyễn Hoài An
Xem chi tiết
Lấp La Lấp Lánh
14 tháng 10 2021 lúc 9:13

\(4x\left(x^2-5x+3\right)=4x^3-20x^2+12x\)

=> Chọn A

Trang Đỗ Mỹ
Xem chi tiết
☆MĭηɦღAηɦ❄
21 tháng 8 2020 lúc 10:05

Ta cóa : \(20x^6-\left(8-40y\right)x^3+25y^2-5\)

\(=20x^6-8x^3+40x^3y+25y^2-5\)

\(=16x^6+40x^3y+25y^2+4x^6-8x^3+4-9\)

\(=\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\)

Ta thấy ngay \(\left(4x^3+5y\right)^2\ge0;4\left(x^3-1\right)^2\ge0\)

\(\Rightarrow\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\ge-9\)

\(\Rightarrow M=\frac{6}{20x^6-\left(8-40y\right)x^3+25y^2-5}\le\frac{6}{-9}=-\frac{2}{3}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}4x^3+5y=0\\x^3-1=0\end{cases}\Leftrightarrow x=1;y=-\frac{4}{5}}\)

Khách vãng lai đã xóa
Law Trafargal
Xem chi tiết