Tìm tất cả các số nguyên n để 2n²+n-7 chia hết cho n-2
TK
2n^2 + n - 7 | n - 2
- 2n^2 - 4n | 2n + 5
5n - 7
- 5n - 10
3
Để ( 2n^2 + n - 7)chia hết cho(n - 2) thì 3 chia hết cho (n - 2)
<=> (n - 2) ∈ Ư(3)
<=> n - 2 = 3 <=> n = 5
hoặc n - 2 = -3 <=> n = -1
hoặc n - 2 = 1 <=> n = 3
hoặc n - 2 = -1 <=> n = 1
Vậy n ∈ {-1;1;3;5} thì 2n^2 + n - 7 chia hết cho n - 2
tìm tất cả các số nguyên n để 2n^2+n-7 chia hết cho n-2
Tìm tất cả các số nguyên n để 2n^2+n-7 chia hết cho n-2
Lấy 2n2+n-7 chia cho n-2 được kết quả là 2n+5 dư 3
\(n\in Z\Leftrightarrow2n-5\inƯ\left(3\right)=\left\{-1;-3;1;3\right\}\)
2n+5 | -1 | 1 | -3 | 3 |
n | -3 | -2 | -4 | -1 |
Vậy \(n\in\left\{-4;-3;-2;-1\right\}\)
thì 2n2+n-7 chia hết cho n-2
Tìm tất cả các số nguyên n để 2n^2+n-7 chia hết cho n-2
Lấy \(2n^2+n-7\div n-2dư3\)
Để \(2n^2+n-7\) chia hết cho n-2 thì n-2 là Ư(3)
mà Ư(3)là {\(\pm1,\pm3\)
nên ta có các trường hợp sau
n-2 \(=-1\)
\(\Rightarrow\) n bằng 1
tương tự
vậy
Tìm a để đa thức 10x^2 - 7x + a chia hết cho 2x - 3
tìm tất cả các số nguyên N để 2n^2 + n - 7 chia hết cho n - 2
Để đa thức 10x^2 - 7x + a chia hết cho 2x - 3, ta cần xác định giá trị của a.
Theo lý thuyết chia đa thức, nếu đa thức chia hết cho 2x - 3 thì trải nghiệm của 2x - 3 sẽ là giá trị của x khi đa thức bằng 0.
Vì vậy, để tìm giá trị của a, ta có thể đặt 10x^2 - 7x + a = 0 và giải phương trình này khi x = 3/2 (do 2x - 3 = 0).
Thay x = 3/2 vào phương thức:
10(3/2)^2 - 7(3/2) + a = 0
Đơn giản hóa:
10(9/4) - 21/2 + a = 0
90/4 - 42/4 + a = 0
48/4 + a = 0
12 + a = 0
một = -12
Vì vậy, giá trị của a là -12 để đa thức 10x^2 - 7x + a chia hết cho 2x - 3.
a) tìm n để đa thức 3x3+10x2-5+n chia hết cho đa thức 3x+1
b) tìm tất cả các số nguyên n để 2n2+n-7 chia hết cho n-2
làm hộ mình bài này nha
a)tìm n để đa thức 3x^3+10x^2-5+n chia hết cho đa thức 3x-1
b) tìm tất cả các số nguyên n để 2n^2+n-7 chia hết cho n-2
Tìm tất cả các số nguyên n để:
a) (n-7) chia hết cho (n-1)
b) (2n-1) là ước của (2n+12)
c) (\(^{n^2}\)+ n + 4) chia hết cho (n+1)
Cứu nhanh với !!!!
a) (n-7) : (n-1)
=> (n-1):(n-1)
=>(n+7) - ( n-1) : n-1
=>n+7 - n+1:n-1
=>(n-n)+(7+1) : n-1
=>0 + 8 :n-1
=> n-1 là Ư(8)={1;2;4;8}
Xét n-1=1 => n=2
n-1=2 => n=3
n-1=4 => n=5
n-1=8 => n=9
Vậy n=2;3;5;9