cho x,y,z nguyên dương đôi một khác nhau t/m : 3^x+3^y+3^z=6831
Tìm x, y, z nguyên dương đôi một khác nhau, thỏa mãn:
\(3^x+3^y+3^z=\) \(\sqrt{1+6830^2+\frac{6830^2}{6831^2}}+\frac{6830}{6831}\)
tìm x, y, z nguyên dương đôi 1 khác nhau thỏa mãn:
\(3^x+3^y+3^z=6831\)
tìm 3 số nguyên dương x;y;z đôi 1 khác nhau thỏa mãn x^3+y^3+z^3=(x+y+z)^2
1,,giải pt nghiệm nguyên dương sau với x ,y đôi 1 khác nhau : x^3+y^3+z^3=(x+y+z)^2
Tìm cặp số tự nhiên ( x; y; z ) biết: \(3^x+3^y+3^z=\sqrt{1+6830^2+\dfrac{6830^2}{6831^2}}+\dfrac{6830}{6831}\)
\(\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{a^2\left(a+1\right)^2+a^2+\left(a+1\right)^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\)
\(=\sqrt{\dfrac{a^2\left(a+1\right)^2+2a\left(a+1\right)+1}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\)
\(=\sqrt{\dfrac{\left(a\left(a+1\right)+1\right)^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\dfrac{a\left(a+1\right)+1}{a+1}+\dfrac{a}{a+1}\)
\(=\dfrac{a^2+2a+1}{a+1}=\dfrac{\left(a+1\right)^2}{a+1}=a+1\)
\(\Rightarrow VP=6831\)
Không làm mất tính tổng quát, giả sử \(x\le y\le z\)
Dễ dàng kiểm chứng \(x=y=z\) không phải là nghiệm
\(3^x+3^y+3^z=6831\Leftrightarrow3^x\left(1+3^{y-x}+3^{z-x}\right)=3^3.253\)
Nếu \(1+3^{y-x}+3^{z-x}\ne253\Rightarrow1+3^{y-x}+3^{z-x}=253.3^k⋮3\)
Nhưng \(1+3^{y-x}+3^{z-x}⋮̸3\) với \(\left\{{}\begin{matrix}x\ne y\\x\ne z\end{matrix}\right.\)\(\Rightarrow\) vô lý
Vậy \(\left\{{}\begin{matrix}3^x=3^3\\1+3^{y-x}+3^{z-x}=253\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\3^{y-3}+3^{z-3}=252\end{matrix}\right.\)
\(\Rightarrow3^{y-3}\left(1+3^{z-y}\right)=252=3^2.28\)
Do \(3^{z-y}+1⋮̸3\) lý luậnt ương tự như trên \(\Rightarrow\left\{{}\begin{matrix}3^{y-3}=3^2\\1+3^{z-y}=28\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y-3=2\\3^{z-y}=27=3^3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=5\\z=8\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=3\\y=5\\z=8\end{matrix}\right.\)
Cho các số x,y,z đôi một khác nhau thỏa mãn:x^3(y-z)+z^3(x-y)=y^3(z-x).
Cmr: x^3+y^3+z^3=3xyz
cho 3 số x,y,z đôi một khác nhau thõa mãn x^3(y-z)+z^3(x-y)=y^3(z-x). CM x^3+y^3+z^3=3xyz
Cho x,y,z là các số dương đôi một khác nhau và \(x^3+y^3+z^3⋮\left(xyz\right)^2\). Tìm thương của phép chia \(x^3+y^3+z^3:\left(xyz\right)^2\)?
Gọi thương của phép chia là a thì ta có:
\(x^3+y^3+z^3=a\left(xyz\right)^2\)
Không mất tính tổng quát ta giả sử: \(x\ge y\ge z\)
Dễ thấy \(y^3+z^3⋮x^2\)
\(\Rightarrow y^3+z^3\ge x^2\left(1\right)\)
Ta lại có:
\(3x^3\ge x^3+y^3+z^3=a\left(xyz\right)^2\)
\(\Leftrightarrow3x\ge a\left(yz\right)^2\)
\(\Leftrightarrow9x^2\ge a^2y^4z^4\left(2\right)\)
Từ (1) và (2) suy ra
\(18y^3\ge9\left(y^3+z^3\right)\ge a^2y^4z^4\)
\(\Leftrightarrow z^5\le a^2yz^4\le18\)
\(\Leftrightarrow0< z\le1\)
\(\Leftrightarrow z=1\)
\(\Rightarrow a^2\le a^2y\le18\)
\(\Leftrightarrow1\le a\le4\)
Tự nhiên làm biếng quá thôi còn lại tự làm nốt nha bé.
cho x,y,z là các số dương khác nhau một đôi và \(x^3+y^3+z^3\) chia hết cho\(x^2y^2z^2\) . Tìm thương của phép chia \(x^3+y^3+z^3:x^2y^2z^2\)