Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương
Xem chi tiết
Nguyễn Ngọc Quỳnh Giao
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 10 2018 lúc 6:53

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.

Ta có: BC = 2R

Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F

Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.

Suy ra: AD = AE = EO = OD = r

Theo tính chất hai tiếp tuyến cắt nhau ta có:

AD = AE

BD = BF

CE = CF

Ta có: 2R + 2r = BF + FC + AD + AE

= (BD + AD) + (AE + CE)

= AB + AC

Vậy AB = AC = 2(R + r)

Lợi Lê
Xem chi tiết
Minh Phươngk9
Xem chi tiết
Đức Hồng
30 tháng 11 2023 lúc 18:05

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.

Ta có:     BC = 2R

Giả sử đường tròn tâm (O) tiếp với AB tại D, AC tại E và BC tại F.

Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.

Đức Hồng
30 tháng 11 2023 lúc 18:06

xin lỗi cái này đđ hơn

 

Đức Hồng
30 tháng 11 2023 lúc 18:06

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.

Ta có:     BC = 2R

Giả sử đường tròn tâm (O) tiếp với AB tại D, AC tại E và BC tại F.

Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.

Suy ra: AD = AE = EO = OD = r

 

Theo tính chất hai tiếp tuyến cắt nhau ta có:

                       AD = AE

                        BD = BF

                        CE = CF

Ta có:               2R + 2r = BF + FC + AD + AE

                                       = (BD + AD) + (AE +CE)

                                       = AB + AC

Vậy AB = AC = 2 (R + r).

𝖈𝖍𝖎𝖎❀
Xem chi tiết
Nguyễn Huy Hoàng
10 tháng 5 2021 lúc 13:34

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllloooooooooooooooonnnnnnnnnnnnnnnnnn

Khách vãng lai đã xóa
Trần Khương Duy
11 tháng 5 2021 lúc 16:55

Vì 1 + 1 = 2 nên 2 + 2 = 4 

Đáp số : Không Biết

Khách vãng lai đã xóa
Tung Nguyễn
Xem chi tiết
na na
Xem chi tiết
Hiền Bùi Ngọc
Xem chi tiết