Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lan Nguyễn Hoàng
Xem chi tiết
Ami Mizuno
18 tháng 10 2021 lúc 20:24

undefinedundefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 7 2017 lúc 14:15

y = 4 x + 4 2 x + 1

Tập xác định: D = R \ {−1/2}

Ta có Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số nghịch biến trên các khoảng (− ∞ ; −1/2) và (−1/2; + ∞ )

Tiệm cận đứng: x = −1/2;

Tiệm cận ngang: y = 2.

Giao với các trục tọa độ: (0; 4) và (-1; 0)

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

ẻ mí
Xem chi tiết
nanako
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 11 2018 lúc 9:15

 

 

Do đó, hàm số đã cho nghịch biến trên tập xác định.

+ Giới hạn:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = 0 (trục Oy) là tiệm cận đứng của đồ thị hàm số

    y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.

+ Bảng biến thiên:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 2 2019 lúc 4:52

y = - x + 2 x + 2

    +) Tập xác định: D = R\{-2}

    +) Ta có: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số nghịch biến trên các khoảng (− ∞ ; −2), (−2; + ∞ )

    +) Tiệm cận đứng x = -2 vì

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tiệm cận ngang y = -1 vì

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giao với các trục tọa độ: (0; 1); (2; 0)

Đồ thị

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 3 2017 lúc 7:32

Tập xác định: R\{0}

Hàm số đã cho là hàm số lẻ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: y′ < 0, ∀ x ∈ R \ {0} nên hàm số luôn nghịch biến trên các khoảng xác định.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 12 2017 lúc 15:51

Tập xác định: D = (0; + ∞ )

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y' < 0 ∀ x ∈ D nên hàm số nghịch biến.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có tiệm cận đứng là trục tung, tiệm cận ngang là trục hoành.

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 10 2018 lúc 3:07

Khảo sát hàm số Giải bài 11 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

- TXĐ: D = R \ {-1}

- Sự biến thiên:

+ Chiều biến thiên:

Giải bài 11 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Hàm số nghịch biến trên các khoảng (-∞; -1) và (-1; +∞).

+ Cực trị: Hàm số không có cực trị.

+ Tiệm cận:

Giải bài 11 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = -1 là tiệm cận đứng của đồ thị hàm số.

Giải bài 11 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

⇒ y = 3 là tiệm cận đứng của đồ thị hàm số.

+ Bảng biến thiên:

Giải bài 11 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

+ Giao với Ox: (-3; 0)

+ Giao với Oy: (0; 3)

+ Đồ thị hàm số nhận (-1; 1) là tâm đối xứng.

Giải bài 11 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 11 2018 lúc 4:08

Với a = 0 ta có hàm số Giải bài 2 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

- Tập xác định : D = R.

- Sự biến thiên :

y’ = -x2 – 2x + 3 ;

y’ = 0 ⇔ x = -3 hoặc x = 1.

QUẢNG CÁO

Bảng biến thiên :

Giải bài 2 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận :

Hàm số đồng biến trên (-3 ; 1)

Hàm số nghịch biến trên (-∞; -3) và (1; +∞).

Hàm số đạt cực đại tại x = 1 ; Giải bài 2 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số đạt cực tiểu tại x = -3 ; yCT = -13.

- Đồ thị hàm số :

Giải bài 2 trang 145 sgk Giải tích 12 | Để học tốt Toán 12