Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lee Yeong Ji
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2022 lúc 23:40

ĐKXĐ: \(x\ge1\)

Do \(\sqrt{x-\sqrt{x^2-1}}.\sqrt{x+\sqrt{x^2-1}}=\sqrt{x^2-x^2+1}=1\)

Đặt \(\sqrt{x-\sqrt{x^2-1}}=t\Rightarrow\sqrt{x+\sqrt{x^2-1}}=\dfrac{1}{t}\)

Phương trình trở thành:

\(t+\dfrac{1}{t}=2\Rightarrow t^2-2t+1=0\Rightarrow t=1\)

\(\Rightarrow\sqrt{x-\sqrt{x^2-1}}=1\Leftrightarrow x-\sqrt{x^2-1}=1\)

\(\Leftrightarrow x-1=\sqrt{x^2-1}\)

\(\Rightarrow x^2-2x+1=x^2-1\)

\(\Rightarrow x=1\) (thỏa mãn)

Hoàng Đình Đại
Xem chi tiết
Lee Yeong Ji
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2024 lúc 14:36

\(\sqrt{x^2-x+1}+\sqrt{x^2-9x+9}=2x\)

=>\(\sqrt{x^2-x+1}-x+\sqrt{x^2-9x+9}-x=0\)

=>\(\dfrac{x^2-x+1-x^2}{\sqrt{x^2-x+1}+x}+\dfrac{x^2-9x+9-x^2}{\sqrt{x^2-9x+9}+x}=0\)

=>\(\left(-x+1\right)\left(\dfrac{1}{\sqrt{x^2-x+1}+x}+\dfrac{9}{\sqrt{x^2-9x+9}+x}\right)=0\)

=>-x+1=0

=>x=1

Nguyễn Quốc Gia Huy
Xem chi tiết
do thuy
Xem chi tiết
LGBT Cũng Là Con Người
Xem chi tiết
Trương Trần Duy Tân
Xem chi tiết
Nguyễn Bá Minh
Xem chi tiết
Phan Văn Hiếu
19 tháng 8 2017 lúc 13:23

a) dat x-1=a

x=a+1

\(a+1+\sqrt{5+\sqrt{a}}=6\)

\(5-a=\sqrt{5+\sqrt{a}}\)

\(25-10a+a^2=5+\sqrt{a}\)

\(20-10a+a^2-\sqrt{a}=0\)

(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0

Nguyễn Bá Minh
19 tháng 8 2017 lúc 14:43

đúng nhưng b,c,d đâu

Phan Văn Hiếu
20 tháng 8 2017 lúc 17:01

ý c)  dk tu viet

\(\left(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}\right)^2=4\)

\(x-\sqrt{x^2-1}+x+\sqrt{x^2-1}+2\sqrt{\left(x-\sqrt{x^2-1}\right)\left(x+\sqrt{x^2-1}\right)}=4\)

\(2x+2\sqrt{x^2-x^2+1}=4\)

\(2x+2=4\)

2x=2

x=1

Minh Tuấn Phạm
Xem chi tiết