Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thảo hân
Xem chi tiết
Lê Chí Công
4 tháng 12 2015 lúc 21:40

Gọi số nguyên tố >3 là a

Ta có:

a2+2015

Vi a​là số chính phương

2015 là hợp số

=>a2+2015 ko thể là số nguyên tố

Vậy a2+2015 ko phải là số ngyen tố

 

 

 

Nguyễn Nhật Minh
4 tháng 12 2015 lúc 21:38

Cộng vế với vế ta được

1999.( x1+x2 +.....+ x2000) = 1+2+3+....+ 2000

nguyenthaohanprocute
Xem chi tiết
dream XD
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2021 lúc 13:32

Vì n là số nguyên tố lớn hơn 3 nên n không chia hết cho 3

hay n=3k+1 hoặc n=3k+2(k∈N)

Thay n=3k+1 vào \(n^2+2006\), ta được:

\(\left(3k+1\right)^2+2006=9k^2+6k+2007=3\left(3k^2+2k+669\right)⋮3\)(1)

Thay n=3k+2 vào \(n^2+2006\), ta được:

\(\left(3k+2\right)^2+2006=9k^2+6k+2010=3\left(3k^2+2k+670\right)⋮3\)(2)

Từ (1) và (2) suy ra \(n^2+2006\) là hợp số

jVũ Ất Mùi
Xem chi tiết
Võ Thạch Đức Tín 1
1 tháng 2 2016 lúc 9:28

sai rồi : a) Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a( Z) ( a2 – n2 = 2006( (a-n) (a+n) = 2006 (*) (0,25 điểm).
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) ( 0,25 điểm).
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thỏa mãn (*) (0,25 điểm).
Vậy không tồn tại n để n2 + 2006 là số chính phương. (0,25 điểm).
b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1 + 2006 = 3m+2007= 3( m+669) chia hết cho 3.
Vậy n2 + 2006 là hợp số. 

kaitovskudo
1 tháng 2 2016 lúc 9:25

Ta có: n là số nguyên tố lớn hơn 3

=>n không chia hết cho 3

TH1: n=3m+1              (m thuộc N)

=>n2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1

=>n2 chia 3 dư 1

TH2: n=3n+2          (k thuộc N)

=>n2=(3k+2)2=3k(3k+2)+2(3k+2)=9k2+6k+6k+4=3(3k2+4k+1)+1

=>n2 chia 3 dư 1

Vậy n2 luôn chia 3 dư 1 (với n là SNT >3)

=>n2=3x+1          (x thuộc N)

=>n2+2006=3x+1+2006=3x+2007=3(x+669) chia hết cho 3

Vậy n2+2006 là hợp số

Võ Thạch Đức Tín 1
1 tháng 2 2016 lúc 9:27

 Do a là snt lớn hơn 3 nên a không chia hết cho 3 
=> a=3k+1 hoặc a= 3k +2 ( k thuộc N) 
Với a=3k+1 
a²+2006 = (3k+1)²+ 2006 
= 9k² + 6k + 2007 chia hết cho 3 (1) 
Với a=3k+2 
a²+2006= (3k+2)²+ 2006 
= 9k²+ 6k+ 2010 chia hết cho 3 (2) 
Kết hợp (1) và (2) c/m được với a là snt > 3 thì a²+2006 chia hết cho 3 
hay a²+2006 là hợp số

Hồ Danh Anh
Xem chi tiết
Nguyễn Tuấn Minh
29 tháng 3 2016 lúc 22:19

n2 là hợp số vì nó chia hết cho n(n>1)

Phùng Thị Mỹ Duyên
29 tháng 3 2016 lúc 22:32

mình mới học lớp 5

Diệp Chi
Xem chi tiết
Diệp Chi
23 tháng 3 2020 lúc 10:06

3 cách nhé mọi người , ai lm đc 3 cách thì mik sẽ cho nhé

Khách vãng lai đã xóa
Fudo
23 tháng 3 2020 lúc 16:27

                                                         Bài giải

n là số nguyên tố lớn hơn 3 nên có dạng 3k + 1 ; 3k + 2

Ta có :

Với n = 3k + 1 thì \(n^2+2015=\left(3k+1\right)^2+2015=9k^2+6k+1+2015=9k^2+6k+2016\)

\(=3\left(3k^2+2k+672\right)\text{ }⋮\text{ }3\text{ ( là hợp số )}\)

Với n = 3k + 2 thì \(n^2+2015=\left(3k+2\right)^2+2015=9k^2+12k+4+2015=9k^2+12k+2019\)

\(=3\left(k^2+4k+673\right)\text{ }⋮\text{ }3\text{ ( là hợp số ) }\)

Vậy n là số nguyên tố lớn hơn 3 thì \(n^2+2015\) là hợp số

Khách vãng lai đã xóa
lucyylucyy
Xem chi tiết
Hoàng Duy Khánh TK
Xem chi tiết
I love soccer
2 tháng 4 2018 lúc 21:13

Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2
 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số

Vũ Đức Duy
Xem chi tiết
bui anh tuan
30 tháng 3 2018 lúc 20:23

Là hợp số

Cấn Thư
26 tháng 4 2019 lúc 20:38

Là hợp số

Tiểu
26 tháng 4 2019 lúc 20:39

Là hợp số