A =3 + 32 + 33 + ....... + 39 + 310 c hứng minh Achia hết cho 4
Cho A = 3 + 32 + 33 +...+ 39 + 310
chứng minh rằng A chia hết cho 4
Cho A = 3 + 32 + 33 +...+ 39 + 310
chứng minh rằng A chia hết cho 4
A=1+31+32+33+...+32021 ./ ctỏ Achia hết cho 4
\(A=1+3^1+3^2+3^3+...+3^{2021}\\=(1+3^1)+(3^2+3^3)+(3^4+3^5)...+(3^{2020}+3^{2021})\\=4+3^2\cdot(1+3)+3^4\cdot(1+3)+...+3^{2020}\cdot(1+3)\\=4+3^2\cdot4+3^4\cdot4+...+3^{2020}\cdot4\\=4\cdot(1+3^2+3^4+...+3^{2020})\)
Vì \(4\cdot(1+3^2+3^4+...+3^{2020})\vdots4\)
nên \(A\vdots4\)
\(\text{#}Toru\)
thank you bạn character debate nha, ai vô trả lời thì cảm ơn nhiều!!
cho A=4+4^2+4^3+4^4+...+4^12 . Chứng minh rằng
a) Achia hết cho 4
b) A chia hết cho 5
c) Achia hết cho 21
giúp mk đi ạ mk đang cần gấp❤
a) A = 4 + 4² + 4³ + ... + 4¹²
= 4.(1 + 4 + 4² + 4³ + ... + 4¹¹) ⋮ 4
Vậy A ⋮ 4
b) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²
= (4 + 4²) + (4³ + 4⁴) + ... + (4¹¹ + 4¹²)
= 4.(1 + 4) + 4³.(1 + 4) + ... + 4¹¹.(1 + 4)
= 4.5 + 4³.5 + ... + 4¹¹.5
= 5.(4 + 4³ + ... + 4¹¹) ⋮ 5
Vậy A ⋮ 5
c) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²
= (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4¹⁰ + 4¹¹ + 4¹²)
= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4¹⁰.(1 + 4 + 4²)
= 4.21 + 4⁴.21 + ... + 4¹⁰.21
= 21.(4 + 4⁴ + ... + 4¹⁰) ⋮ 21
Vậy A ⋮ 21
cho A= 1+3+32+33+..........+ 311 a. chứng minh rằng Achia hết cho 4 ;b.chứng minh rằng Achia hết 10;c.chứng minh rằng A chia hết cho 13
\(A=1+3+3^2+..........+3^{11}\)
\(\Leftrightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+.........+\left(3^{10}+3^{11}\right)\)
\(\Leftrightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+.........+3^{10}\left(1+3\right)\)
\(\Leftrightarrow A=1.4+3^2.4+.......+3^{10}.4\)
\(\Leftrightarrow A=4\left(1+3^2+..........+3^{10}\right)⋮4\left(đpcm\right)\)
A = 1 + 3 + 32 + 33 + ... + 311
A = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 310 + 311 )
A = 4 + 32 . ( 1 + 3 ) + ... + 310 . ( 1 + 3 )
A = 4 + 32 . 4 + ... + 310 . 4
A = 4 . ( 1 + 32 + ... + 310 ) \(⋮\) 4 ( Vì trong tích có một thừa số chia hết cho 4 )
~ Chúc bạn học giỏi ! ~
A = 1 + 3 + 32 + 33 + ... + 311
A = ( 1 + 3 + 32 ) + ... + ( 39 + 310 + 311 )
A = 13 + ... + 39 . ( 1 + 3 + 32 )
A = 13 + ... + 39 . 13
A = 13 . ( 1 + ... + 39 ) \(⋮\) 13 ( Vì trong tích có một thừa số chia hết cho 13 )
~ Chúc bạn học giỏi ! ~
Chứng minh rằng S = 3 + 3 2 + 3 3 + . .. + 3 9 chia hết cho (-39)
S = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 39 + 3 3 . 39 + 3 6 . 39 = 39 . 1 + 3 3 + 3 6 ⋮ − 39
Vậy S chia hết cho -39
Chứng minh rằng S = 3 + 3 2 + 3 3 + ... + 3 9 chia hết cho -39
S = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 39 + 3 3 . 39 + 3 6 . 39 = 39. 1 + 3 3 + 3 6 ⋮ − 39
Vậy S chia hết cho -39
CHỨNG MINH RẰNG
A= 88+220 chia hết cho 17
B= 2+ 22+23+24+...+260 chia hết cho 3; cho 7; cho 15
C= 1+3+32+33+...+31991 chia hết cho 13; cho 41
D=3+32+33+34+...+32010 chia hết cho 4;cho 13
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
Bài 6. Cho B = 3 + 32 +33 + ...+ 3120 . Chứng minh rằng: a) B chia hết cho 3; b) B chia hết cho 4; c) B chia hết cho 13.
\(B=3+3^2+3^3+...+3^{120}\)
Dễ thấy \(B\)chia hết cho \(3\)do là tổng của các số hạng chia hết cho \(3\).
\(B=3+3^2+3^3+...+3^{120}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{119}\right)⋮4\)
\(B=3+3^2+3^3+...+3^{120}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{118}\right)⋮13\)