CMR nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n chia hết cho 8
Chứng minh rằng nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì n chia hết cho 8
CMR: nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì n la bội số của 24
Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)
Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)
Từ (1),(2)(1),(2) có n⋮24n⋮24.
Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)
Từ (1),(2)(1),(2) có n⋮24n⋮24.
CMR: nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì n là bội của số 24
Giúp mik với m.n ơi
CMR: nếu 2n+1 và 3n+1 đều là các số chính phương thì n chia hết cho 40
Bạn tham khảo bài làm của vài bn khác nhé ! ( Ấn vào Câu hỏi tương tự ý )
Mik phải đi ngủ rồi !
-Bye-
Chứng minh rằng nếu 2n+1 và 3n+1 ( với n là số tự nhiên khác 0 ) đều là số chính phương thì n chia hết cho 40
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 (1)
3a +1 = m^2 (2)
từ (1) => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1
=> a = 2k(k+1)
vậy a chẵn .
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1
(1) + (2) được:
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1
=> 5a = 4k(k+1) + 4p(p+1)
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý)
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý)
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7)
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý)
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý)
=> a chia hết cho 5
5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
CMR: nếu n+1 và 2n+1 đều là số chính phương thì n chia hết cho 24
CMR nếu n+1 và 2n+1 đều là số chính phương thì n chia hết cho 24.
mod là viết tắt của module, là kiến thức liên quan đến đồng dư nha bạn
Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24
Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ
\(\Rightarrow2n+1=1\left(mod8\right)\)
=> n \(⋮\) 4
=> n chẵn
=> n+1 cũng là số lẻ
\(\Rightarrow n+1=1\left(mod8\right)\)
=> n \(⋮\) 8
Mặt khác :
\(3n+2=2\left(mod3\right)\)
\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)
Mà n+1 và 2n+1 là các số chính phương lẻ
\(\Rightarrow n+1=2n+1=1\left(mod3\right)\)
=> n chia hết cho 3
Mà ( 3 ; 8 ) = 1
=> n chia hết cho 24
Vì n + 1 và 2n + 1 đêu là phân số chính phương nên đặt n+1 = k\(^2\), 2n+1 = m\(^2\)( k, m \(\in\) N)
Ta có m là số lẻ => m = 2a+1 =>m\(^2\)= 4a(a+1)+1
=>n=\(\frac{m^2-1}{2}\)=\(\frac{4a\left(a+1\right)}{2}\)=2a(a+1)
=> n chẵn =>n+1 là số lẻ =>k lẻ =>Đặt k = 2b+1 (Với b \(\in\) N) =>k\(^2\)=4b(b+1)+1
=> n=4b(b+1) =>n \(⋮\)8 (1)
Ta có k\(^2\) + m\(^2\) =3n+2=2 ( mod3)
Mặt khác k\(^2\) chia 3 dư 0 hoặc 1 ,m\(^2\)chia 3 dư 0 hoặc 1
Nên để k\(^2\)+m\(^2\) =2 (mod3) thì k\(^2\) = 1(mod3)
m\(^2\) = 1 (mod3)
=>m\(^2\)-k\(^2\)\(⋮\)3 hay (2n+1)-(n+1) \(⋮\)3 =>n \(⋮\) 3
Mà (8;3)=1
Từ (1) ; (2) và (3) => n \(⋮\) 24
Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24
Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)
Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)
Từ (1),(2)(1),(2) có n⋮24
cuộc đời sao lắm dèm pha
đi đâu cũng gặp lâu la thế này
1. tìm số tự nhiên n có hai chữ số, biết rằng 2n+1 và 3n+1 đều là các số chính phương.
2.tìm số tự nhiên có hai chữ số, biết rằng nếu nhân nó với 45 thì được một số chính phương.
3.a) Các số tự nhiên n và 2n có tổng các các chữ số bằng nhau. Chứng minh rằng n chia hết cho 9.
b)* tìm số chính phương n cá ba chữ số, biết rằng n chia hết cho 5 và nếu nhân n với 2 thì tổng các chữ số của nó không đổi.
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm