Tìm các số nguyên tố x,y sao cho : (x-3)(x+3)=14y3.
1 ) Tìm số nguyên tố p , sao cho - + 2 và p + 4 cũng là các số nguyên tố ?
2 )Tổng của 2 số nguyên tố có thể bằng 2009 được không ? Tại sao ?
3 ) Tìm các số nguyên tố x và 7 , biết :
a ) ( 2x + 1 ) ( y + 3 ) = 10
b ) ( x + 1 ) ( 2y - 1 ) = 12
c ) x - 3 = y ( x + 2 )
d )( x + 6 ) =y ( x - 1 )
e ) ( 3x - 2 ) ( 2y - 3 ) = 1
2)
Tổng của 2 số là 2009
=> Trong 2 số phải có 1 số chẵn và 1 số lẻ
Mà số nguyên tố chẵn duy nhất là 2
=> 1 số là 2. Số còn lại là:
2009 - 2 = 2007 không là số nguyên tố
=> Tổng của 2 số nguyên tố không thể bằng 2009.
1)
Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)
Với p = 3 => p + 2 = 3 + 2 = 5 là SNT
=> p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)
Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3
=> p + 2 là hợp số (loại)
Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3
=> p + 4 là hợp số (loại)
Vậy p = 3
3)
a) (2x + 1)(y + 3) = 10
=> 2x + 1 và y + 3 là các ước của 10
Ư(10) = {1; 2; 5; 10}
Lập bảng giá trị:
2x + 1 | 1 | 10 | 2 | 5 |
y + 3 | 10 | 1 | 5 | 2 |
x | 0 | 4,5 | 0,5 | 2 |
y | 7 | -2 | 2 | -1 |
Đối chiếu điều kiện x,y ∈ N
=> x = 0, y = 7
Vậy x = 0, y = 7
tìm các số nguyên tố x,y,z sao cho :x^5 +y^3-(x+y)^2=3*z^3
Ta có:
\(x\) và \(x^5\) có cùng tính chẵn - lẻ (cùng tính chẵn - lẻ nghĩa là nếu \(x\) lẻ thì \(x^5\) lẻ, còn nếu \(x\) chẵn thì \(x^5\) cũng chẵn luôn)
\(y\) và \(y^3\) có cùng tính chẵn - lẻ
\(\left(x+y\right)\) và \(\left(x+y\right)^2\) có cùng tính chẵn - lẻ
Vậy \(x^5+y^3-\left(x+y\right)^2\) và \(x+y-\left(x+y\right)\) có cùng tính chẵn - lẻ
Trong mọi trường hợp, dù \(x\) và \(y\) lẻ hay chẵn thì kết quả luôn là số chẵn\(\Rightarrow3z^3\) là số chẵn\(\Rightarrow z\) phải là số chẵn mà 2 là số nguyên tố chẵn duy nhất\(\Rightarrow z=2\)
\(\Rightarrow x^5+y^3-\left(x+y\right)^2=3\cdot2^3=24\)
Chỉ khi \(x=y=2\) thì phương trình trên mới hợp lí.
Vậy \(x=y=2\)
Đáp số: \(x=y=z=2\)
Tìm tất cả các giá trị x,y nguyên dương sao cho \(\left(x^3+y\right)\left(y^3+x\right)\) là lập phương của một số nguyên tố.
Tìm tất cả các số nguyên tố p sao cho với p tồn tại các nguyên dương x,y,n sao cho pn=x3+y3
Tìm các số nguyên dương x, y sao cho 8x3 + y3 - 6xy + 1 là số nguyên tố
\(8x^3+y^3-6xy+1=\left(2x+y\right)^3\)\(-6xy\left(2x+y\right)-6xy+1\)
\(\Leftrightarrow\left(2x+y+1\right)\)\(\left[\left(2x+y\right)^2-\left(2x+y\right)+1-6xy\right]\)
\(\Leftrightarrow\left(2x+y+1\right)\)\(\left(4x^2+y^2-2x-y-2xy+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}2x+y+1=1\\4x^2+y^2-2x-y-2xy+1=1\end{cases}}\)
Xét nốt các trường hợp là xong
Xét TH2 thế nào vậy bạn. Mình cũng đang cần nhưng không biết làm
Bài 10. Tìm số tự nhiên n, biết rằng: 1 + 2 + 3 + ..... + n = 820
Bài 11. Tìm các số tự nhiên x, y, sao cho:
a/ (2x+1)(y-3) = 10
b/ (3x-2)(2y-3) = 1
c/ (x+1)(2y-1) = 12
d/ x + 6 = y(x-1)
e/ x-3 = y(x+2)
f/ x + 2y + xy = 5
g/ 3x + xy + y = 4
Bài 12. Tìm số nguyên tố p sao cho:
a/ p + 2 và p + 4 là số nguyên tố
b/ p + 94 và p + 1994 cũng là số nguyên tố
Tìm tất cả các số nguyên tố x,y sao cho
3.x^2+1= 19.y^2
Tìm các số nguyên tố x, y sao cho x^y+1 cũng là số nguyên tố
Lời giải:
Nếu $x$ lẻ thì $x^y+1$ chẵn, mà $x^y+1>2$ với $x,y\in\mathbb{P}$ nên $x^y+1$ không thể là số nguyên tố (trái giả thiết)
Do đó $x$ chẵn $\Rightarrow x=2$
$x^y+1=2^y+1$
Nếu $y$ chẵn thì $y=2$. Khi đó $x^y+1=2^2+1=5$ cũng là snt (tm)
Nếu $y$ lẻ:
$x^y+1=2^y+1\equiv (-1)^y+1\equiv -1+1\equiv \pmod 3$
Mà $2^y+1>3$ với mọi $y$ nguyên tố lẻ nên $2^y+1$ không là snt (trái giả thiết)
Vậy $x=y=2$
Tìm các số nguyên tố x, y sao cho x^y+1 cũng là số nguyên tố