Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ann Linh
Xem chi tiết
Jackson Roy
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 4 2019 lúc 14:46

Câu 3:

\(A=cos\frac{\pi}{7}.cos\frac{5\pi}{7}.cos\frac{4\pi}{7}=cos\frac{\pi}{7}.cos\left(\pi-\frac{2\pi}{7}\right).cos\frac{4\pi}{7}\)

\(A=-cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)

\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{2}.2sin\frac{\pi}{7}.cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)

\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{2}.sin\frac{2\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)

\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{4}sin\frac{4\pi}{7}.cos\frac{4\pi}{7}\)

\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{8}sin\frac{8\pi}{7}=-\frac{1}{8}sin\left(\pi+\frac{\pi}{7}\right)=\frac{1}{8}sin\frac{\pi}{7}\)

\(\Rightarrow A=\frac{1}{8}\)

Câu 4:

Đầu tiên ta chứng minh công thức:

\(tana+tanb=\frac{sina}{cosa}+\frac{sinb}{cosb}=\frac{sina.cosb+cosa.sinb}{cosa.cosb}=\frac{sin\left(a+b\right)}{cosa.cosb}\)

Áp dụng để biến đổi tử số:

\(tan30+tan60+tan40+tan50=\frac{sin90}{cos30.cos60}+\frac{sin90}{cos40.cos50}=\frac{1}{cos30.cos60}+\frac{1}{cos40.cos50}\)

\(=\frac{2}{cos90+cos30}+\frac{2}{cos90+cos10}=\frac{2}{cos30}+\frac{2}{cos10}=2\left(\frac{cos30+cos10}{cos30.cos10}\right)\)

\(=2\left(\frac{2cos20.cos10}{cos30.cos10}\right)=\frac{4.cos20}{cos30}=\frac{8\sqrt{3}}{3}.cos20\)

\(\Rightarrow A=\frac{\frac{8\sqrt{3}}{3}cos20}{cos20}=\frac{8\sqrt{3}}{3}\)

Câu 5:

\(cos54.cos4-cos36.cos86=cos54.cos4-cos\left(90-54\right).cos\left(90-4\right)\)

\(=cos54.cos4-sin54.sin4=cos\left(54+4\right)=cos58\)

Nguyễn Việt Lâm
11 tháng 4 2019 lúc 14:28

Câu 1:

\(A=\frac{1}{2sin10}-2sin70=\frac{1-4sin10.sin70}{2sin10}=\frac{1+2\left(cos80-cos60\right)}{2sin10}\)

\(=\frac{1+2cos80-1}{2sin10}=\frac{2cos80}{2sin10}=\frac{sin10}{sin10}=1\)

Câu 2:

\(cos10.cos30.cos50.cos70=cos10.cos30.\frac{1}{2}\left(cos120+cos20\right)\)

\(=\frac{1}{2}cos30\left(cos10.cos120+cos10.cos20\right)\)

\(=\frac{1}{2}cos30\left(cos10.cos120+\frac{1}{2}\left(cos30+cos10\right)\right)\)

\(=\frac{1}{2}cos30\left(cos10.cos120+\frac{1}{2}cos30+\frac{1}{2}cos10\right)\)

\(=\frac{1}{2}.\frac{\sqrt{3}}{2}\left(-\frac{1}{2}cos10+\frac{1}{2}\frac{\sqrt{3}}{2}+\frac{1}{2}cos10\right)\)

\(=\frac{3}{16}\)

Nguyễn Hoàng Thắng
Xem chi tiết
Sad Memories
6 tháng 3 2017 lúc 22:34

~ So sad :( !! ~

\(A=\frac{31}{60}\)

I thinks so ! Sad

Đào Thế Anh 2005
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Đặng Ngọc Quỳnh
2 tháng 10 2020 lúc 18:10

MTC: (x+y)(x+1)(1-y)

\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)

\(=x-y+xy\)

Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định

Khách vãng lai đã xóa
kim tae hyung
Xem chi tiết
GOODBYE!
14 tháng 3 2019 lúc 20:26

KQ:\(\frac{1}{5}\)

kim tae hyung
14 tháng 3 2019 lúc 20:30

cho tớ xin cách lm

Thanh Trinh Nguyễn Thị
Xem chi tiết
Thầy Giáo
18 tháng 7 2017 lúc 21:55

ĐK x khác 4 và x không âm

\(=\frac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{4-x}\\ =\frac{8\sqrt{x}+4x}{4-x}\\ =\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\\ =\frac{4\sqrt{x}}{2-\sqrt{x}}\)

Thanh Trinh Nguyễn Thị
20 tháng 7 2017 lúc 19:49

Cảm ơn ạ

nguyen tuan anh
Xem chi tiết
Thu Hiền
21 tháng 2 2017 lúc 19:55

= 2/7 

= 33/8 

nha bn nguyen tuan anh

phuong ta tuong
21 tháng 2 2017 lúc 19:57

\(\frac{48}{168}\cdot\frac{132}{32}=\frac{2^4\cdot3}{2^3\cdot3\cdot7}\cdot\frac{2^2\cdot3\cdot11}{2^5}=\frac{2\cdot1}{1\cdot1\cdot7}\cdot\frac{1\cdot3\cdot11}{2^3}=\frac{33}{28}\)

Nguyễn Diệu Linh
Xem chi tiết
Hanako-kun
2 tháng 5 2020 lúc 10:40

\(B=\frac{-\sin\left(\frac{\pi}{2}+144^0\right)-\cos126^0}{\sin144^0-\cos126^0}.\tan\left(\pi-144^0\right)\)

\(B=\frac{-\cos144^0-\cos126^0}{\sin144^0-\cos126^0}.\left(-\tan144^0\right)\)

\(B=\frac{\sin144^0.\cos144^0+\sin144^0.\cos126^0}{\sin144^0.\cos144^0-\cos144^0.\cos126^0}\)

\(B=\frac{\sin\left(\pi+\frac{\pi}{2}-126^0\right)[\cos\left(\pi+\frac{\pi}{2}-126^0\right)+\cos126^0]}{\cos\left(\pi+\frac{\pi}{2}-126^0\right)[\sin\left(\pi+\frac{\pi}{2}-126^0\right)-\cos126^0]}\)

\(\sin\left(\pi+\frac{\pi}{2}-126^0\right)=-\sin\left(\frac{\pi}{2}-126^0\right)=-\cos126^0\)

\(\cos\left(\pi+\frac{\pi}{2}-126^0\right)=-\cos\left(\frac{\pi}{2}-126^0\right)=-\sin126^0\)

\(\Rightarrow B=\frac{-\cos126^0\left(-\sin126^0+\cos126^0\right)}{-\sin126^0\left(-\cos126^0-\cos126^0\right)}\)

\(=\cot126^0.\frac{\sin126^0-\cos126^0}{2\cos126^0}\)

\(=\cot126^0\left(\frac{1}{2}.\tan126^0-\frac{1}{2}\right)\)

\(=\frac{1}{\tan126^0}.\frac{1}{2}.\tan126^0-\frac{1}{2}.\cot126^0=\frac{1}{2}\left(1-\cot126^0\right)\)

Thế này là gọn nhất rồi đấy :<

Nguyễn Việt Lâm
2 tháng 5 2020 lúc 11:29

\(B=\frac{sin126^0-cos144^0}{sin144^0-cos126^0}.tan36^0=\frac{cos36^0+sin54^0}{cos54^0+sin36^0}.tan36^0\)

\(=\frac{cos36^0+cos36^0}{sin36^0+sin36^0}.tan36^0=cot36^0.tan36^0=1\)