2x^2+4y^2+10x+4xy=-25
I : Tìm x , y
a) x^2+y^2-2x+4y+5=0
b) 4x^2+y^2-4x-6x+10=0
c) 5x^2-4xy+y^2-4x+4=0
d)2x^2-4xy+4y^2-10x+25=0
help me
a. Ta có: x2+y2-2x+4y+5=0
⇌(x-1)2+(y-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
b. Ta có: 4x2+y2-4x-6y+10=0
⇌ (2x-1)2+(y-3)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3\end{matrix}\right.\)
c.Ta có: 5x2-4xy+y2-4x+4=0
⇌(2x-y)2+(x-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=2\end{matrix}\right.\)
d.Ta có: 2x2-4xy+4y2-10x+25=0
⇌ (x-2y)2+(x-5)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{2}\\x=5\end{matrix}\right.\)
a,x^3-4x=0
b,5x(3x-2)=4-9x^2
c,x^2+7x=8
d,2x^2+4y^2+10x+4xy=-25
a) \(x^3-4x=0\)
\(x\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}}\)
b) \(5x\left(3x-2\right)=4-9x^2\)
\(5x\left(3x-2\right)-\left(4-9x^2\right)=0\)
\(5x\left(3x-2\right)-\left(2-3x\right)\left(2+3x\right)=0\)
\(5x\left(3x-2\right)+\left(3x-2\right)\left(2+3x\right)=0\)
\(\left(3x-2\right)\left(5x+3x+2\right)=0\)
\(\left(3x-2\right)\left(8x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\8x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{-1}{4}\end{cases}}}\)
c) \(x^2+7x=8\)
\(x^2+7x-8=0\)
\(x^2+8x-x-8=0\)
\(x\left(x+8\right)-\left(x+8\right)=0\)
\(\left(x+8\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+8=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-8\\x=1\end{cases}}}\)
d) \(2x^2+4y^2+10x+4xy=-25\)
\(x^2+x^2+4y^2+10x+4xy+25=0\)
\(\left(4y^2+4xy+x^2\right)+\left(x^2+10x+25\right)=0\)
\(\left(2y+x\right)^2+\left(x+5\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}2y+x=0\\x+5=0\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{5}{2}\\x=-5\end{cases}}}\)
a, 4xy+x^2+4y^2
b, 25+x^2-10x
c, 2x^3+12x^2+18x
d, 3ab/4+3abx+3abx^2
a) =(2y+x)2
b)=(5-x)2
c) =2x(x2+6x+9)
d) = 3ab(1/4+x+x2)=3ab(x+1/2)2
Tìm giá trị lớn nhất
a.11-10x-x^2
b.3-10x^2-4xy-4y^2
c.-x^2+2xy-4y^2+2x+10y-8
1,Tìm GTNN
\(2x^2+5y^2-4xy-2x+4y+10\)
2,Tìm GTLN
a,\(3-10x^2-4xy-4y^2\)
b,\(-x^2-y^2+2x-4y-4\)
1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu
Rút gọn các biểu thức
E=\(x^2-4xy+5y^2+10x-22y+25+1+2\)
F=-\(-x^2+2xy-4y^2+2x+10y-8\)
Phân tích đa thức thành nhân tử (đặt ẩn phụ )
a, x^2+2xy+y^2+2x+2y-15
b, x^2 - 4xy+4y^2-2x-4y-35
c, 6x^4 - 5x^3+8x^2-5x+6
d, x^4+2x^3+2x^2+10x+25
Mong các bạn giúp mình ạ !!
a, x2+2xy+y2+2x+2y-15
<=> (x+y )2+2(x+y)+1-16
Đặt x+y =a
<=> a2+2a+1-42
<=> (a+1)2-42
<=> (a+5)(a-3) =>( x+y+5)(x+y-3)
b, x2-4xy+4y2-2x-4y-35
<=> (x-2y)2-2(x-2y)+1-36
Đặt (x-2y) =b
=> b2-2b+1-62
<=> (b-1)2-62
<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)
c,
a,A= x^2+2xy+y^2+2x+2y-15
= (x+y)^2+(x+y)-15
Đặt x+y=a, ta có:
A=a^2+2a-15
=a^2+2a+1-16
=(a+1)^2-4^2
=(a+1+4)(a+1-4)
=(a+5)(a-3)
Thay a=x+y, ta có: A=(x+y+5)(x+y-3).
b,B= x^2 - 4xy+4y^2-2x-4y-35
Hình như là sai đề đó bạn. Phải là x^2 - 4xy+4y^2-2x+4y-35 hoặc x^2 - 4xy+4y^2+2x-4y-35 hoặc x^2 + 4xy+4y^2-2x-4y-35 mới đúng đó bạn. Bạn xem lại đi nha.
c,C=6x^4 - 5x^3+8x^2-5x+6
C= x^2(6x^2-5x+8-5/x+6/x^2)
=x^2(6(x^2+2+1/x^2)-5(x+1/x)-4)
=x^2(6(x+1/x)^2-5(x+1/x)-4)
Đặt x+1/x=a, ta có:
C=x^2(6a^2-5a-4)
=x^2(6a^2+3a-8a-4)
=x^2(2a+1)(3a-4)
Thay a=x+1/x vào là được bạn nhé.
phân tích các đa thức sau thành nhân tử
a) 4x^2 - 4xy + 4y^2
b) x^2 - 4xy +4y^2
c) x^2 + 10x + 25
d)x^2 - 10x + 25
e) 81 - (x+1)^2
f) 16x^2 - 64 (y + 1)^2
làm hết hộ nha
phân tích các đa thức sau thành nhân tử
a) 4x^2 - 4xy + 4y^2
\(=\) \(\left(2x\right)^2-4xy+\left(2y\right)^2\)
\(=\left(2x-2y\right)^2\)
b) x^2 - 4xy +4y^2
\(=x^2-4xy+\left(2y\right)^2\)
\(=\left(x-2y\right)^2\)
c) x^2 + 10x + 25
\(=x^2+2.x.5+5^2\)
\(=\left(x+5\right)^2\)
d)x^2 - 10x + 25
\(=x^2-2.x.5+5^2\)
\(=\left(x-5\right)^2\)
e) 81 - (x+1)^2
\(=9^2-\left(x+1\right)^2\)
\(=\left(9-x-1\right)\left(9+x+1\right)\)
f) 16x^2 - 64 (y + 1)^2
\(=16x^2-8^2\left(y+1\right)^2\)
\(=16x^2-\left(8y+8\right)^2\)
\(=\left(16-8y-8\right)\left(16+8y+8\right)\)
p/s: ko chắc câu cuối đâu :v
\(b,x^2-4xy+4y^2=\left(x-2y\right)^2\)
\(c,x^2+10+25=\left(x+5\right)^2\)
\(d,x^2-10x+25=\left(x-5\right)^2\)
\(e,81-\left(x+1\right)^2=\left(9-x-1\right)\left(9+x+1\right)=\left(8-x\right)\left(10+x\right)\)\(f,16x^2-64\left(y+1\right)^2=\left(4x\right)^2-\left[8\left(y+1\right)\right]^2=\left(4x-8y-8\right)\left(4x+8y+8\right)\)
tìm x y biết 2x^2+4y^2+4xy-10x-12y+13=0