Làm tính chia
(x\(^4\)+2x\(^3\)+10x-25):(x\(^2\)+5)
Tính chia
(x\(^4\)+2x\(^3\)+10x-25):(x\(^2\)+5)
\(=\left(x^4+5x^2+2x^3+10x-5x^2-25\right):\left(x^2+5\right)\\ =\left[x^2\left(x^2+5\right)+2x\left(x^2+5\right)-5\left(x^2+5\right)\right]:\left(x^2+5\right)\\ =x^2+2x-5\)
a, làm tính chia: (x^6-2x^5+2x^4+6x^3-4x^2)/6x^2
b,tìm n để đa thức 3x^3+10x^2-5+n chia hết cho đa thức 3x+1
Làm tính chia
(2x\(^3\)-7x\(^2\)+7x-2):(x-2)
\(=\left(2x^3-4x^2-3x^2+6x+x-2\right):\left(x-2\right)\\ =\left(x-2\right)\left(2x^2-3x+1\right):\left(x-2\right)=2x^2-3x+1\)
1) \(\sqrt{x^2}=2x-5\)
2) \(\sqrt{25x^2-10x+1}=2x-6\)
3) \(\sqrt{25-10x+x^2}=2x-5\)
4) \(\sqrt{1-2x+x^2}=2x-1\)
5) \(\sqrt{4x^2+4x+1}=-x-3\)
1) ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{x^2}=2x-5\\ \Rightarrow\left|x\right|=2x-5\\ \Rightarrow\left[{}\begin{matrix}x=2x-5\\x=5-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
2) ĐKXĐ: \(x\ge3\)
\(\sqrt{25x^2-10x+1}=2x-6\\ \Rightarrow\left|5x-1\right|=2x-6\\ \Rightarrow\left[{}\begin{matrix}5x-1=2x-6\\5x-1=6-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
3) ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{25-10x+x^2}=2x-5\\ \Rightarrow\left|x-5\right|=2x-5\\ \Rightarrow\left[{}\begin{matrix}x-5=2x-5\\x-5=5-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{10}{3}\left(tm\right)\end{matrix}\right.\)
4) ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{1-2x+x^2}=2x-1\\ \Rightarrow\left|x-1\right|=2x-1\\ \Rightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{2}{3}\left(tm\right)\end{matrix}\right.\)
Bài 1:
555 - 5 x [ 409 - (2 mũ 3 x 3 - 21) mũ 2 - 310]
Bài 2:
a) 10x +187 = 617 mũ 10 : 617 mũ 9
b) 5 mũ 2 + x = 25 mũ 4
c) (2x + 17) chia hết (x + 4)
help me!
tim x
x^2-5x-4(x-5)=0
2x(x+6)=7x+42
x^3-5x^2+x-5=0
x^4-2x^3+10x^2-20x=0
(2x-3)-x^2+10x-25=0
\(x^2-5x-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
Vậy....
\(2x\left(x+6\right)=7x+42\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)
Vậy......
\(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy...
Bài 1: Không làm tính chia, hãy tính số dư trong phép chia
\(a,\left(x^4-6x^2+2x+28\right):\left(x-1\right)\)
\(b,\left(x^4-6x^2+2x+28\right):\left(x-2\right)\)
a)\(x^4-6x^2+2x+28\)
\(=\left(x^4-x^3\right)+\left(x^3-x^2\right)-\left(5x^2-5x\right)-\left(3x-3\right)+25\)
\(=\left(x-1\right)\left(x^3+x^2-5x-3\right)+25\)
=> số dư là 25
b) Cách làm tương tự câu a nhé
giải phương trình:
p/s: bạn nào làm đc câu nào thì làm, ko nhất thiết phải làm hết
a,\(\sqrt{\left(x-1\right)^2}=5\)
b,\(3+\sqrt{x}=5\)
c,\(\sqrt{x^2-2x+1}=x-1\)
d,\(\sqrt{x^2-10x+25}=x+3\)
e,\(\sqrt{x-5}+\sqrt{5-x}=1\)
a, \(\sqrt{\left(x-1\right)^2}=5\Rightarrow\left(x-1\right)=\left\{5;-5\right\}\Leftrightarrow\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)
b,\(3+\sqrt{x}=5\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
c,\(\sqrt{x^2-2x+1}=x-1\Rightarrow\sqrt{\left(x-1\right)^2}=x-1\Rightarrow x-1=\left\{x-1;-\left(x-1\right)\right\}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=x-1\Rightarrow x\in R\\x-1=-\left(x-1\right)\Rightarrow x-1=-x+1\Rightarrow x+x=1+1\Rightarrow2x=2\Rightarrow x=1\end{cases}}\)
Vậy x = 1
d, \(\sqrt{x^2-10x+25}=x+3\Rightarrow\sqrt{\left(x-5\right)^2}=x+3\Rightarrow x-5=\left\{x+3;-\left(x+3\right)\right\}\)
\(\Leftrightarrow\hept{\begin{cases}x-5=x+3\Rightarrow x-x=3+5\Rightarrow0x=8\left(loai\right)\\x-5=-\left(x+3\right)\Rightarrow x-5=-x-3\Rightarrow x+x=-3+5\Rightarrow2x=2\Rightarrow x=1\left(chon\right)\end{cases}}\)
Vậy x = 1
(x^4 + 2x^3 + 10x - 25):(x^2 +5)
\(\frac{x^4+2x^3+10x-25}{x^2+5}\)
\(=\frac{\left(x^4+5x^2\right)+\left(2x^3+10x\right)-\left(5x^2+25\right)}{x^2+5}\)
\(=\frac{x^2.\left(x^2+5\right)+2x.\left(x^2+5\right)-5.\left(x^2+5\right)}{x^2+5}\)
\(=\frac{\left(x^2+5\right)\left(x^2+2x-5\right)}{x^2+5}\)
\(=x^2+2x-5\)\(\left(x^2+5\ne0\right)\)
Tham khảo nhé~
\(x^4+2x^3+10x-25\)
\(=x^4+5x^2+2x^3+10x-5x^2-25\)
\(=x^2\left(x^2+5\right)+2x\left(x^2+5\right)-5\left(x^2+5\right)\)
\(=\left(x^2+5\right)\left(x^2+2x-5\right)\)
Vậy \(\left(x^4+2x^3+10x-25\right):\left(x^2+5\right)=x^2+2x-5\)