Tìm n để các số sau nguyên tố cùng nhau
a,7n+13 và 2n+4
b,18n+3 và 21n+7
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:
a) 7 n + 13 v à 2 n + 4
b) 4 n + 3 v à 2 n + 3
c) 18 n + 3 v à 21 n + 7
Tìm n để các số sau nguyên tố cùng nhau
a,7n+13 và 2n+4
b,18n+3 và 21n+7
Tìm stn n để các số sau nguyên tố cùng nhau
a, 4n + 3 và 2n + 3
b, 7n + 13 và 2n + 4
c, 2n + 3 và 4n + 8
d, 9n + 24 và 3n + 4
e, 18n + 3 và 21n + 7
a,tim n \(\in\) N; 4n + 3 và 2n + 3 nguyên tố cùng nhau
Gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d ta có:
\(\left\{{}\begin{matrix}4n+3⋮d\\2n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4n+3⋮d\\\left(2n+3\right).2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}4n+3⋮d\\4n+6⋮d\end{matrix}\right.\)
⇒ 4n + 6 - (4n + 3) ⋮ d ⇒ 4n + 6 - 4n - 3 ⋮ d ⇒ 3 ⋮ d
⇒ d = 1; 3
Để 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau thì
2n + 3 không chia hết cho 3
2n không chia hết cho 3
n = 3k + 1; hoặc n = 3k + 2 (k \(\in\) N)
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:a)4n+3 và 2n+3
b)7n+13 và 2n+4
c)9n+24 và 3n+4
d)18n+3 và 21n+7
a) Đặt d = (4n + 3, 2n + 3).
Ta có \(2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\Leftrightarrow\) d = 1 hoặc d = 3.
Do đó muốn hai số 4n + 3 và 2n + 3 nguyên tố cùng nhau thì d khác 3, tức 4n + 3 không chia hết cho 3 hoặc 2n + 3 không chia hết cho 3
\(\Leftrightarrow n⋮3̸\).
Vậy các số tự nhiên n cần tìm là các số tự nhiên không chia hết cho 3.
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:
a) 4n+ 3 và 2n+ 3.
b) 7n+ 13 và 2n+ 4.
c) 9n+ 24 và 3n+ 4.
d) 18n+ 3 và 21n+ 7.
Tìm số tự nhiên n để các số sau là các số nguyên tố cùng nhau
a) 4n+3 và 2n+3
b) 7n+13 và 2n +4
c) 18n + 3 và 21n + 7
Giúp mk T_T please
em là người đầu tiên đọc được nhưng tiếc là em mới lớp 4
a) Giả sử 4n + 34n + 3 và 2n + 32n + 3 cùng chia hết cho số nguyên tố d thì:
2(2n + 3) − (4n + 3) ⋮ d → 3 ⋮ d → d = 3
Để (2n + 3,4n + 3) = 1 thì d≠3. Ta có:
4n + 3 không chia hết cho 3 nếu 4n không chia hết cho 3 hay n không chia hết cho 3.
Kết luận: Với n không chia hết cho 3 thì 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau.
b) Giả sử 7n + 13 và 2n + 4 cùng chia hết cho số nguyên tố d.
Ta có: 7(2n + 4) − 2(7n + 13) ⋮ d → 2 ⋮ d→ d ∈ {1; 2}
Để (7n + 13, 2n + 4) = 1 thì d ≠ 2
Ta có: 2n + 4 luôn chia hết cho 2 khi đó 7n + 13 không chia hết cho 2 nếu 7n chia hết cho 3 hay n chia hết cho 2..
Kết luận: Với n chẵn thì thì 7n + 13 và 2n + 4 là hai số nguyên tố cùng nhau.
cGiả sử 18n + 3 và 21n + 7 cùng chia hết cho số nguyên tố d
Ta có: 6(21n + 7) − 7(18n + 3) ⋮ d → 21 ⋮ d → d ∈ {3; 7}. Hiển nhiên d ≠ 3 vì 21n + 721n + 7 không chia hết cho 3.
Để (18n + 3, 21n + 7) = 1 thì d ≠ 7 tức là 18n + 3 không chia hết cho 7, nếu 18n + 3 − 21 không chia hết cho 7 ↔ 18(n − 1) không chia hết cho 7↔n − 1 không chia hết cho 7 ↔ n ≠ 7k + 1 (k ∈ N).
Kết luận: Với n ≠ 7k + 1 (k ∈ N) thì 18n + 3 và 21n + 7 là hai số nguyên tố cùng nhau.
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:
a/ 7n +13 va 2n+4
b/ 18n+3 va 21n+7
Tìm số tự nhiên n để các số sau là hai số nguyên tố cùng nhau:
a)4n+3 và 2n+3
b)7n+13 và 2n+4
c)9n+24 và 3n+4
d)18n+3 và 21n+7
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau
a) 4n+3 và 2n+3 b) 7n+13 vsf 2n+4
c) 9n+24 và 3n +4 d) 18n+3 và 21n+7
a) n = 0
b) n = 0
c) n = 3
d) n = 2
Chúc bạn học tốt!