Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minz Ank
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 4 2023 lúc 10:43

TH1:  |x-2014|^2015=1 và |x-2015|^2014=0

=>(x-2014=1 hoặc x-2014=-1) và x-2015=0

=>x=2015

TH2: |x-2014|^2015=0và |x-2015|^2014=1

=>x-2014=0 và (x-2015=1 hoặc x-2015=-1)

=>x=2014

Cao Tran Tieu Doan
Xem chi tiết
Lê Trần Khánh Như
Xem chi tiết
Nguyễn Thành Long
21 tháng 2 2019 lúc 17:43

ta có ; x-3/2015 -1 +x-2/2016 -1 = x-2016/2 -1 +x-2015/3-1

x-2018/2015 + x-2018/2016 = x-2018/2 +x-2018/3

(x-2018)*(1/2015+1/2016-1/2-1/3)=0

vi (1/2015+1/2016-1/2-1/3) luon khac 0

suy ra : x-2018 = 0 suy ra x=2018

Nguyễn Tấn Phát
21 tháng 2 2019 lúc 17:57

\(\frac{x-3}{2015}+\frac{x-2}{2016}=\frac{x-2016}{2}+\frac{x-2015}{3}\)

trừ 2 vế với 2, ta có:

\(\frac{x-3}{2015}+\frac{x-2}{2016}-2=\frac{x-2016}{2}+\frac{x-2015}{3}-2\)

\(\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-2}{2016}-1\right)=\left(\frac{x-2016}{2}-1\right)+\left(\frac{x-2015}{3}-1\right)\)

\(\frac{x-2018}{2015}+\frac{x-2018}{2016}=\frac{x-2018}{2}+\frac{x-2018}{3}\)

\(\left(x-2018\right)\frac{1}{2015}+\left(x-2018\right)\frac{1}{2016}=\left(x-2018\right)\frac{1}{2}+\left(x-2018\right)\frac{1}{3}\)

\(\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}\right)=\left(x-2018\right)\left(\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(x-2018\right)\left(\frac{1}{2}+\frac{1}{3}\right)=0\)

\(\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\right)=0\)

Mà \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\ne0\)

\(\Rightarrow x-2018=0\Leftrightarrow x=2018\)

Vậy tập nghiệm của PT là\(S=\left\{2018\right\}\)

™ˆ†ìñh♥Ảøˆ™
Xem chi tiết
Minh Tú
Xem chi tiết
Trần Quốc Khanh
9 tháng 3 2020 lúc 13:46

gõ phân số ra cho mk nhìn đc ko cậu

Khách vãng lai đã xóa
Funnybright
Xem chi tiết
Funnybright
30 tháng 3 2015 lúc 17:28

ai giups tui di

 

Trần Đức Long
Xem chi tiết
Ngu Ngu Ngu
27 tháng 4 2017 lúc 10:08

Ta xét:

1. Nếu \(x=2015\) hoặc \(x=2016\) thì thỏa mãn đề bài

2. Nếu \(x< 2015\)  thì \(\hept{\begin{cases}\left|x-2015\right|^{2015}>0\\\left|x-2016\right|^{2016}>1\end{cases}}\)

\(\Leftrightarrow\left|x-2015\right|^{2015}+\left|x-2016\right|^{2016}>0+1=1\) (vô nghiệm)

3. Nếu \(x>2016\) thì \(\hept{\begin{cases}\left|x-2015\right|^{2015}>1\\\left|x-2016\right|^{2016}>0\end{cases}}\)

\(\Leftrightarrow\left|x-2015\right|^{2015}+\left|x-2016\right|^{2016}>1+0=1\) (vô nghiệm)

Vậy phương trình có 2 nghiệm là \(\left(2015;2016\right)\)

Lê Minh Anh
27 tháng 4 2017 lúc 10:19

*)Xét x < 2015

=> |x - 2016| > 1  <=> |x - 2016|2016 > 1

=> x < 2015 không là nghiệm của pt

**)Xét x > 2016

=> |x - 2015| > 1 <=> |x - 2015|2015 > 1

=> x > 2016 không là nghiệm của pt

***) Xét 2015 < x < 2016

=> 0 < |x - 2015| < 1  (1)

0 < |x - 2016| = |2016 - x|< 1   (2)

=> |x - 2015| + |x - 2016| = |x - 2015| + |2016 - x| = x - 2015 + 2016 - x = 1

Mà:  |x - 2015| > |x - 2015|2015 (theo (1)) và |x - 2016| > |x - 2016|2016 (theo (2))

=> |x - 2015|2015 + |x - 2016|2016 < |x - 2015| + |x - 2016| = 1

Vậy phương trình chỉ có 2 nghiệm là x1 = 2015 và x2 = 2016

KIM EU JI
Xem chi tiết
Nguyễn Anh Quân
8 tháng 3 2018 lúc 20:59

pt <=> (x/2012 - 1) + (x+1/2013 - 1) + (x+2/2014 - 1) + (x+3/2015 - 1) + (x+4/2016 - 1) = 0

<=> x-2012/2012 + x-2012/2013 + x-2012/2014 + x-2012/2015 + x-2012/2016 = 0

<=> (x-2012).(1/2012+1/2013+1/2014+1/2015+1/2016) = 0

<=> x-2012 = 0 ( vì 1/2012+1/2013+1/2014+1/2015+1/2016 > 0 )

<=> x=2012

Vậy x=2012

Tk mk nha

Phùng Minh Quân
8 tháng 3 2018 lúc 21:00

Ta có : 

\(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)

\(\Leftrightarrow\)\(\left(\frac{x}{2012}-1\right)+\left(\frac{x+1}{2013}-1\right)+\left(\frac{x+2}{2014}-1\right)+\left(\frac{x+3}{2015}-1\right)+\left(\frac{x+4}{2016}-1\right)=5-5\)

\(\Leftrightarrow\)\(\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)

\(\Leftrightarrow\)\(\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)

Vì \(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\ne0\)

\(\Rightarrow\)\(x-2012=0\)

\(\Rightarrow\)\(x=2012\)

Vậy \(x=2012\)

Chúc bạn học tốt ~

Nguyễn Phúc Lộc
Xem chi tiết
Hoàng Lê Bảo Ngọc
5 tháng 11 2016 lúc 20:38

\(\sqrt{x}+\sqrt{2015-y}=\sqrt{2015}\Leftrightarrow\left(\sqrt{x}+\sqrt{2015-y}\right)^2=2015\)

\(\Leftrightarrow x-y+2\sqrt{x}.\sqrt{2015-y}=0\Leftrightarrow4x.\left(2015-y\right)=\left(y-x\right)^2\)

\(\Leftrightarrow x^2+y^2-2xy=2015.4x-4xy\Leftrightarrow\left(x+y\right)^2=2015.4x\)

Tương tự : \(\sqrt{2015-x}+\sqrt{y}=\sqrt{2015}\Leftrightarrow\left(x+y\right)^2=2015.4y\)

Từ đó suy ra x = y 

Tới đây bạn tự làm nhé :)

Dũng Senpai
Xem chi tiết