Những câu hỏi liên quan
Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:34

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

Bình luận (1)
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:37

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

Bình luận (0)
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:39

Câu 1:

\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(VT=1-\dfrac{1}{n}< 1\) (đpcm)

Bình luận (0)
Nguyễn Hải Minh
Xem chi tiết
Lê Tài Bảo Châu
9 tháng 8 2021 lúc 16:42

Ta có: \(2a+b^2=2a\left(a+b+c\right)+b^2=b^2+2a^2+2ab+2ac\)

\(\ge4ab+2ac+a^2\)

\(\Rightarrow\frac{a}{2a+b^2}\le\frac{a}{4ab+2ac+a^2}=\frac{1}{4b+2c+a}\)

\(\le\frac{1}{49}.\frac{49}{4b+2c+a}=\frac{1}{49}.\frac{\left(4+2+1\right)^2}{4b+2c+a}\)

\(\le\frac{1}{49}\left(\frac{16}{4b}+\frac{4}{2c}+\frac{1}{a}\right)=\frac{1}{49}\left(\frac{4}{b}+\frac{2}{c}+\frac{1}{a}\right)\)

CMTT: \(\frac{b}{2b+c^2}\le\frac{1}{49}\left(\frac{4}{c}+\frac{2}{a}+\frac{1}{b}\right);\frac{c}{2c+a^2}\le\frac{1}{49}\left(\frac{4}{a}+\frac{2}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{2a+b^2}+\frac{b}{2b+c^2}+\frac{c}{2c+a^2}\le\frac{1}{7}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
Nấm Nấm
Xem chi tiết
Phùng Minh Quân
31 tháng 8 2019 lúc 20:35

\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)

Tương tự cộng lại quy đồng ta có đpcm 

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Bình luận (0)
Con Heo
Xem chi tiết
alibaba nguyễn
25 tháng 3 2017 lúc 8:44

Ta có:

\(\left(a+b-c\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge2ac+2bc-2ab\)

Mà \(a^2+b^2+c^2=\frac{5}{3}< 2\)

\(\Rightarrow2ac+2bc-2ab< 2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

Bình luận (0)
Ut02_huong
Xem chi tiết
Ut02_huong
Xem chi tiết
Ut02_huong
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
Phan Nghĩa
29 tháng 9 2017 lúc 14:51

Với mọi \(a,b,c\in R\)thì ta có:

\(a^2+b^2+c^2\ge2bc+2ca-2ab\)*

Ta cần chứng minh * là BĐT đúng

Từ * \(\Leftrightarrow a^2+b^2+c^2+2ab-2bc-2ca\ge0\)

        \(\Leftrightarrow"a+b-c"^2\ge0\)**

BĐT ** hiển nhiên đúng với mọi a,b,c, mà các phép biến đỗi trên tương tự:

Do đó, BĐT * được chứng minh

Xảy ra đẳng thức trên khi và chỉ khi \(a+b=c\)

Mặt khác

\(a^2+b^2+c^2=\frac{5}{3}\)theo giả thiết

Mà: \(\frac{5}{3}=1\frac{2}{3}< 2\)

\(\Rightarrow a^2+b^2+c^2< 2\)***

Từ * và *** kết hợp lại ta có thể viết " kép " lại được: \(2bc+2ca-2ab\le a^2+b^2+c^2< 2\)

Suy ra: \(2bc+2ca-2ab< 2\)

Khi đó, vì abc > 0 do a,b,c ko âm nên chia cả hai vế cho bất đằng trên cho 2abc, ta được:

\(\frac{2bc+2ca-2ab}{2abc}>\frac{2}{2abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

Vậy: với a,b,c là các số thực dương thỏa mãn điểu kiện \(a^2+b^2+c^2=\frac{5}{3}\)thì ta chứng minh được: \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

P/s:....

Bình luận (0)