Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kyle Thompson
Xem chi tiết
Tran Le Khanh Linh
2 tháng 5 2020 lúc 6:32

Để chứng minh n2+n+1 không thể là số chính phương ta sẽ chứng minh n2+n+1 không chia hết cho 9

Giả sử n2+n+1 chia hết cho 9

<=> n2+n+1=9k (k thuộc N)

<=> n2+n+1-9k=0 (1)

\(\Delta=1^2-4\left(1-9k\right)=36k-3=3\left(12k-1\right)\)

Ta thấy \(\Delta⋮3\)và không chia hế cho hết cho 9 nên không là số chính phương => pt (1) trên không thể nghiệm nguyên

Vậy n2+n+1 không chia hết cho 9 hay n2+n+1 không là số chính phương

Khách vãng lai đã xóa
Bạch Diệp
Xem chi tiết
Nguyễn Xuân Hưng
12 tháng 1 2017 lúc 5:16

xét x<4 và x>3

nếu x<4 thì: +Với x=1 thì x!+2003=2004 (loại vì ko là scp)

                 +Với x=2 thì x!+2003=2005 (loại vì ko là scp)

                 +Với x=3 thì x!+2003=2009 (loại vì ko là scp)

nếu x>3 thì x! sẽ chia hết cho 3                (1)

Mặt khác 2003 chia 3 dư 2             (2)

Từ (1) và (2) suy ra: x!+2003 chia 3 dư 2 

Mà scp khi chia cho 3 ko có số dư là 2

=> x!+2003 ko là scp

Vậy ......................

Trần Vũ Phương Thảo
Xem chi tiết
Trần Tuấn Hoàng
29 tháng 3 2022 lúc 19:26

-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)

\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)

\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)

\(\Leftrightarrow-2n-4043+2022< 0\)

\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)

-Từ điều trên ta suy ra:

\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.

 

Con Gái Họ Trần
Xem chi tiết
Trần Thị Loan
28 tháng 9 2015 lúc 20:42

A = 1 + 2.1 + 3.2.1 + 4.3.2.1 + 5! + ...+ n! = 33 + 5! + ...+ n!

Nhận xét: Từ 5! trở đi mỗi số hạng đều tận cùng là 0 (Vì chứa 5.2 = 10) => A có tận cùng là 3

=> A không thể là số chính phương

Nguyễn An
Xem chi tiết
Angle Love
Xem chi tiết
Đinh Thị Hà Linh
Xem chi tiết

Nếu n là số lẻ n có dạng : 2k + 1 ( k\(\in\) N)

A = 2018 + ( 2k+ 1+ 1)2 

A = 2018 + (2k+2)2

A = 2018 + 4.( k+1)2 ⇒ A  ⋮ 2 Nếu A là số chính phương 

⇒ A ⋮ 4 ( tính chất 1 số chính phương ) 

⇒ 2018 ⋮ 4 ( vô lý)

Nếu n là số chẵn  n =2k ( k \(\in\) N)

A = 2018 + ( 2k + 1)2

2k + 1 không chia hết cho 4 ⇒ ( 2k+1)2 : 4 dư 1 ( tc của 1 số chính phương)

A = 2018 + ( 2k + 1)2 : 4 dư 3 ⇒ A không phải là số chính phương vì một số chính phương chia 4 chỉ có thể dư 0 hoặc 1.

Vậy không thể tồn tại n để 2018 + ( n +1)2 là số chính phương 

 

Đoàn Trần Quỳnh Hương
20 tháng 2 2023 lúc 14:50

Gỉa sử 2018 + \(n^2\) là số chính phương => 2018 + \(n^2\) = \(a^2\) ( a là số tự nhiên )
=> 2018 = \(a^2\)- \(n^2\) = (a - n)(a + n)
Ta có: (a + n) - (a - n) =  a + n - a +n = 2n ( chia hết cho 2 )

\(\Rightarrow\) 2 số m - n và m + n phải có cùng tính chẵn lẻ
Mà 2018 = 1.2018 = 2.1009 với các cặp số (1;2018) và (2;1009) đều không cùng tính chẵn lẻ 
Vậy ta kết luận:  2018 + n^2 không là số chính phương

Đoàn Trần Quỳnh Hương
20 tháng 2 2023 lúc 14:57

Xin lỗi về phần giải trước do nhầm đề bài nên nó không đúng đâu nha

Tạ Đức Hoàng Anh
Xem chi tiết
Thé giới lãng quên
1 tháng 3 2019 lúc 21:41

giả sử n^2+2008 là 1 số chính phương

suy ra n^2+2008=a^2(a>0)

a^2-n^2=2008

(a-n)(a+n)=2008

thấy a+n>a-n

suy ra a+n)(a-n)= mấy nhân mấy đó (mik chưa tính)

thay vào tìm đc n

nhưng n không là stn

nên n^2+2008 ko là số chính phương vơi n là stn

trần văn trung
1 tháng 3 2019 lúc 21:48

 Đặt   \(n^2+2018=m^2\)

Ta có một  số chính phương chia cho 4 dư 0 hoặc 1

\(n^2+2018=m^2\)=>\(m^2-n^2=2018\)

xét số dư của \(m^2-n^2\)cho 4

ta có bảng 

\(m^2\)             0       1     1    0

\(n^2\)              0         1     0     1

\(m^2-n^2\) 0         0      1     -1

mà \(2018\equiv2\left(mod4\right)\)

mà một số cp chia co 4 dư o hoặc 1

vậy o  tìm đc số thoả mãn

 T I C  K nha!

zZz Cool Kid_new zZz
2 tháng 3 2019 lúc 17:32

Đặt \(n^2+2018=m^2\)

\(\Rightarrow m^2-n^2=2018\)

\(\Rightarrow\left(m-n\right)\left(m+n\right)=2018\)

Ta có \(m-n+m+n=2m⋮2\)

\(\Rightarrow\) m và n cùng tính chẵn lẻ

\(\Rightarrow m-n⋮2;m+n⋮2\)

\(\Rightarrow\left(m-n\right)\left(m+n\right)⋮4\)

Mà  \(2018\) không chia hết cho 4

\(\Rightarrowđpcm\)

Le Dinh Quan
Xem chi tiết
minh
Xem chi tiết
Trần Tuyết Như
29 tháng 3 2015 lúc 16:24

đề bài là như vậy phải ko: Chứng minh rằng với n là số tự nhiên lẻ thì n3+1 không thể là số chính phương?

giả sử 

n^3 +1 = a^2 , a là số tự nhiên

=>n>a>0

=>n lớn hơn hoặc bằng a+1

=> a^2 = n^3 +1 lớn hơn hoặc bằng (a+1)^3 +1

=>a^3 + 2a^2 +3a +2 nhỏ hơn hoặc bằng không

=> a=0

=> n= -1 vô lí

=> đpcm

Đào Phúc Thịnh
9 tháng 10 2021 lúc 19:42

Ko hiểu, tại sao n>a vậy. Thấy từ dòng n^3+1=a^2 => n>a ko thấy hợp lí cho lắm vì n với a chả có mối quan hệ nào cả, nếu n=1 thì a=căn2, vậy a>n mới đúng chứ

Khách vãng lai đã xóa