Chứng minh với mọi n là số tự nhiên thì \(n^2+2018\)
không thể là số chính phương
Chứng minh với mọi số tự nhiên n thì n2 + n + 1 không thể là số chính phương.
Để chứng minh n2+n+1 không thể là số chính phương ta sẽ chứng minh n2+n+1 không chia hết cho 9
Giả sử n2+n+1 chia hết cho 9
<=> n2+n+1=9k (k thuộc N)
<=> n2+n+1-9k=0 (1)
\(\Delta=1^2-4\left(1-9k\right)=36k-3=3\left(12k-1\right)\)
Ta thấy \(\Delta⋮3\)và không chia hế cho hết cho 9 nên không là số chính phương => pt (1) trên không thể nghiệm nguyên
Vậy n2+n+1 không chia hết cho 9 hay n2+n+1 không là số chính phương
Chứng minh với mọi số tự nhiên n thì n!+2003 không thể là số chính phương
xét x<4 và x>3
nếu x<4 thì: +Với x=1 thì x!+2003=2004 (loại vì ko là scp)
+Với x=2 thì x!+2003=2005 (loại vì ko là scp)
+Với x=3 thì x!+2003=2009 (loại vì ko là scp)
nếu x>3 thì x! sẽ chia hết cho 3 (1)
Mặt khác 2003 chia 3 dư 2 (2)
Từ (1) và (2) suy ra: x!+2003 chia 3 dư 2
Mà scp khi chia cho 3 ko có số dư là 2
=> x!+2003 ko là scp
Vậy ......................
chứng minh rằng với mọi số tự nhiên n thì (n+2021)^2+2022 không là số chính phương
-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)
\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)
\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)
\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)
\(\Leftrightarrow-2n-4043+2022< 0\)
\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)
-Từ điều trên ta suy ra:
\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)
-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.
Chứng minh rằng với mọi số tự nhiên n \(\ge\)5 thì số A = 1 ! + 2 ! + 3 ! + ..................+ n ! không thể là số chính phương
A = 1 + 2.1 + 3.2.1 + 4.3.2.1 + 5! + ...+ n! = 33 + 5! + ...+ n!
Nhận xét: Từ 5! trở đi mỗi số hạng đều tận cùng là 0 (Vì chứa 5.2 = 10) => A có tận cùng là 3
=> A không thể là số chính phương
chứng minh rằng với mọi số tự nhiên n≥1 thì (n+2)(n+1)(n+8) không thể là lập phương của một số tự nhiên.
Chứng minh rằng, với mọi số tự nhiên n thì 3n + 4 không là số chính phương.
Nếu n là số lẻ n có dạng : 2k + 1 ( k\(\in\) N)
A = 2018 + ( 2k+ 1+ 1)2
A = 2018 + (2k+2)2
A = 2018 + 4.( k+1)2 ⇒ A ⋮ 2 Nếu A là số chính phương
⇒ A ⋮ 4 ( tính chất 1 số chính phương )
⇒ 2018 ⋮ 4 ( vô lý)
Nếu n là số chẵn n =2k ( k \(\in\) N)
A = 2018 + ( 2k + 1)2;
2k + 1 không chia hết cho 4 ⇒ ( 2k+1)2 : 4 dư 1 ( tc của 1 số chính phương)
A = 2018 + ( 2k + 1)2 : 4 dư 3 ⇒ A không phải là số chính phương vì một số chính phương chia 4 chỉ có thể dư 0 hoặc 1.
Vậy không thể tồn tại n để 2018 + ( n +1)2 là số chính phương
Gỉa sử 2018 + \(n^2\) là số chính phương => 2018 + \(n^2\) = \(a^2\) ( a là số tự nhiên )
=> 2018 = \(a^2\)- \(n^2\) = (a - n)(a + n)
Ta có: (a + n) - (a - n) = a + n - a +n = 2n ( chia hết cho 2 )
\(\Rightarrow\) 2 số m - n và m + n phải có cùng tính chẵn lẻ
Mà 2018 = 1.2018 = 2.1009 với các cặp số (1;2018) và (2;1009) đều không cùng tính chẵn lẻ
Vậy ta kết luận: 2018 + n^2 không là số chính phương
Xin lỗi về phần giải trước do nhầm đề bài nên nó không đúng đâu nha
Chứng minh rằng không tồn tại số tự nhiên n để n2+2018 là số chính phương
Giúp mình với.....?????
giả sử n^2+2008 là 1 số chính phương
suy ra n^2+2008=a^2(a>0)
a^2-n^2=2008
(a-n)(a+n)=2008
thấy a+n>a-n
suy ra a+n)(a-n)= mấy nhân mấy đó (mik chưa tính)
thay vào tìm đc n
nhưng n không là stn
nên n^2+2008 ko là số chính phương vơi n là stn
Đặt \(n^2+2018=m^2\)
Ta có một số chính phương chia cho 4 dư 0 hoặc 1
\(n^2+2018=m^2\)=>\(m^2-n^2=2018\)
xét số dư của \(m^2-n^2\)cho 4
ta có bảng
\(m^2\) 0 1 1 0
\(n^2\) 0 1 0 1
\(m^2-n^2\) 0 0 1 -1
mà \(2018\equiv2\left(mod4\right)\)
mà một số cp chia co 4 dư o hoặc 1
vậy o tìm đc số thoả mãn
T I C K nha!
Đặt \(n^2+2018=m^2\)
\(\Rightarrow m^2-n^2=2018\)
\(\Rightarrow\left(m-n\right)\left(m+n\right)=2018\)
Ta có \(m-n+m+n=2m⋮2\)
\(\Rightarrow\) m và n cùng tính chẵn lẻ
\(\Rightarrow m-n⋮2;m+n⋮2\)
\(\Rightarrow\left(m-n\right)\left(m+n\right)⋮4\)
Mà \(2018\) không chia hết cho 4
\(\Rightarrowđpcm\)
Chứng minh với mọi số tự nhiên n≥1 thì (n+2)(n+1)(n+8) không thể là lập phương của một số tự nhiên
Chứng minh rằng với n là số tự nhiên lẻ thì n3+1 không thể là số chính phương?
đề bài là như vậy phải ko: Chứng minh rằng với n là số tự nhiên lẻ thì n3+1 không thể là số chính phương?
giả sử
n^3 +1 = a^2 , a là số tự nhiên
=>n>a>0
=>n lớn hơn hoặc bằng a+1
=> a^2 = n^3 +1 lớn hơn hoặc bằng (a+1)^3 +1
=>a^3 + 2a^2 +3a +2 nhỏ hơn hoặc bằng không
=> a=0
=> n= -1 vô lí
=> đpcm
Ko hiểu, tại sao n>a vậy. Thấy từ dòng n^3+1=a^2 => n>a ko thấy hợp lí cho lắm vì n với a chả có mối quan hệ nào cả, nếu n=1 thì a=căn2, vậy a>n mới đúng chứ