Chứng minh nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
thì \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{x^{2019}+y^{2019}+z^{2019}}\)
chứng minh nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)thì \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}\)
cho x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)CM: \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{x^{2019}+y^{2019}+z^{2019}}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)=> \(\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
=> (x+y+z)(xy+yz+zx) = xyz
=> \(x^2y+xy^2+y^2z+yz^2+zx^2+z^2x+2xyz=0\)
=> (x+y)(y+z)(z+x) = 0
=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
TH1: x = -y
=> \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{\left(-y\right)^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{z^{2019}}\)
=> \(\frac{1}{x^{2019}+y^{2019}+z^{2019}}=\frac{1}{\left(-y\right)^{2019}+y^{2019}+z^{2019}}=\frac{1}{z^{2019}}\)
=> ĐPCM
Tương tự với TH2 và TH3
cho x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)CM: \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{x^{2019}+y^{2019}+z^{2019}}\)
Cho \(\frac{1}{x}+\frac{1}{Y}+\frac{1}{z}=\frac{1}{x+y+z}\)
cmr: \(\frac{1}{X^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{x^{2019}+y^{2019}+z^{2019}} \)
Cho x, y, z khác 0 thỏa mãn x + y + z = 2019 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2019}\)
Chứng minh rằng có ít nhất một trong 3 số bằng 2019.
Cho ba số x, y, z khác 0 thỏa mãn:x+y+z=2019 và \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=2019
Tính A=\(\frac{1}{x^{2019}}\)+\(\frac{1}{y^{2019}}\)+\(\frac{1}{z^{2019}}\)
Sửa đề : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2019}\)
Thay \(2019=x+y+z\)ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{z}{z\left(x+y+z\right)}-\frac{x+y+z}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-x-y-z}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)=-xy\left(x+y\right)\)
\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)+xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left[z\left(x+y+z\right)+xy\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left(xz+yz+z^2+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)
( mình chỉ xét 1 t/h, các t/h còn lại hoàn toàn tương tự )
TH1 : \(x+y=0\)
\(\Leftrightarrow x=-y\)(1)
Thay (1) vào A ta có :
\(A=\frac{1}{-y^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}\)
\(A=\frac{1}{z^{2019}}\)
Mặt khác : \(x+y+z=2019\)
Thay (1) vào đẳng thức trên ta được : \(-y+y+z=2019\)
\(\Leftrightarrow z=2019\)
Thay z vào A ta được : \(A=\frac{1}{2019^{2019}}\)
sửa đền nha:\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=\(\frac{1}{2019}\)
nguyệt dạ hình như là mai linh... t đang tìm bài này thì thấy lp mk ... thành ra trong lp hỏi nhau :)))
Cho 3 số x,y,z thỏa mãn \(\hept{\begin{cases}x+y+z=2019\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2019}\end{cases}}\).Tính giá trị biểu thức \(P=\left(x^{2017}+y^{2017}\right)\left(y^{2019}+z^{2019}\right)\left(z^{2021}+x^{2021}\right)\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z}{\left(x+y+z\right).z}-\frac{x+y+z}{z.\left(x+y+z\right)}=\frac{-x-y}{z.\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{x+y}{-z.\left(x+y+z\right)}\)
TH1: x+y=0
=> x=-y => P=0
TH2: xy=-z.(x+y+z)
\(\Leftrightarrow xy=-xz-zy-z^2\Leftrightarrow xy+xz+zy+z^2=0\Leftrightarrow x.\left(y+z\right)+z.\left(y+z\right)=0\)
\(\Leftrightarrow\left(x+z\right).\left(y+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-z\\y=-z\end{cases}\Rightarrow P=0}\)
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)