Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cú Già Madao
Xem chi tiết
Dương Diệu Hoang
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2020 lúc 22:37

1.

\(2sin^2x+4sinx.cosx=3-3cos^2x\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(\Rightarrow2tan^2x+4tanx=3\left(1+tan^2x\right)-3\)

\(\Leftrightarrow2tan^2x+4tanx=3tan^2x\)

\(\Leftrightarrow tan^2x-4tanx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\tanx=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=arctan\left(4\right)+k\pi\end{matrix}\right.\)

Các nghiệm thỏa mãn là: \(\left\{-\pi;0;\pi;arctan\left(4\right)-\pi;arctan\left(4\right)\right\}\)

Có 5 nghiệm trên đoạn đã cho

Nguyễn Việt Lâm
30 tháng 8 2020 lúc 22:40

2.

Chắc đề là \(2cos^2x-3\sqrt{3}sin2x-4sin^2x=-4\)

\(\Leftrightarrow2cos^2x-6\sqrt{3}sinx.cosx+4\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2cos^2x-6\sqrt{3}sinx.cosx+4cos^2x=0\)

\(\Leftrightarrow6cos^2x-6\sqrt{3}sinx.cosx=0\)

\(\Leftrightarrow6cosx\left(cosx-\sqrt{3}sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\tanx=\frac{1}{\sqrt{3}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Các nghiệm thuộc đoạn đã cho: \(\left\{\frac{\pi}{2};\frac{3\pi}{2};\frac{\pi}{6};\frac{7\pi}{6}\right\}\) có 4 nghiệm thỏa mãn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 10 2017 lúc 8:47

Chọn đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 3 2019 lúc 4:16

Chọn D.

Phương pháp: Giải phương trình và tìm nghiệm âm lớn nhất, nghiệm dương nhỏ nhất.

Cách giải: Ta có:

Vậy tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình  2 sin   2 x   -   2 cos   2 x   = 2  

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2019 lúc 6:27

Chọn D

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 9 2018 lúc 5:08

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 11 2018 lúc 4:53

Chọn D

Nkjuiopmli Sv5
Xem chi tiết
Trần Ái Linh
17 tháng 7 2021 lúc 22:14

`2sin^2x+\sqrt3sin2x=3`

`<=>2. (1-cos2x)/2 + \sqrt3sin2x=3`

`<=>\sqrt3sin2x-cos2x=2`

`<=> \sqrt3/2 sin2x-1/2 cos2x=1`

`<=>sin (2x-π/6) = 1`

`<=> 2x-π/6=π/2+k2π`

`<=> x=π/3+kπ (k \in ZZ)`.

Nguyễn Việt Lâm
17 tháng 7 2021 lúc 22:12

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x=3\)

\(\Leftrightarrow\sqrt{3}sin2x-cos2x=2\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{6}\right)=1\)

\(\Leftrightarrow2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 12 2019 lúc 6:07