Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Phương
Xem chi tiết
Nguyễn Thiều Công Thành
14 tháng 8 2017 lúc 23:01

giả sử 1 trong 3 số=2

=>abc chia hết cho 2

=>a;c chia hết cho 2

=>a=c=2=>b=2

với a;b;c cùng lẻ=>a^2+c^2 chia hết cho 2

mà abc ko chia hết cho 2=>vô lí

Vậy a=b=c=2

Đào Linh
Xem chi tiết

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 15:33

2: A=n^2+3n+2=(n+1)(n+2)

Để A là số nguyên tố thì n+1=1 hoặc n+2=2

=>n=0

Plastic Momeries
Xem chi tiết
Đứng Sau Một Tình Yêu
10 tháng 3 2019 lúc 8:56

khó thế bạn ơi

Le Hỏi Chấm
Xem chi tiết
Nguyễn Trí Hùng
Xem chi tiết
Jenner
Xem chi tiết
Ngu Công
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 1 2019 lúc 3:34

Từ abc = 3(a + b + c)  suy ra a chia hết cho 3 hoạc b chia hết cho 3 hoặc c chia hết cho 3. Vậy

Do b và c là các sốnguyên tố  b   -   1   ≥ 1 ;   c   - 1   ≥ 1    và b – 1 , c – 1 là ước của 4 vậy chúng nhận 1 trông các giá trị là 1, 2, 4. Vậy ta có các trường hợp sau:

Các cặp số (a, b, c) phải Tìm là : (3, 3, 3) ; (3, 2, 5) ; (3, 5, 2) ; (5, 3, 2 ) ; (5, 2, 3) ; (2, 3, 5) ; (2, 5, 3)

Jenner
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 22:05

a. Ta có: \(2^p+1=\left(2^p-2\right)+3\)

Mà theo định lý Ferma nhỏ: \(2^p-2⋮p\Rightarrow3⋮p\Rightarrow p=3\)

b.

 - Với \(n=3k\Rightarrow2^n+1=2^{3k}+1=8^k+1\)

Mà \(8\equiv1\left(mod7\right)\Rightarrow8^k+1\equiv2\left(mod7\right)\Rightarrow\) ko chia hết cho 7

- Với \(n=3k+1\Rightarrow2^n+1=2^{3k+1}+1=2.8^k+1\)

\(2.8^k+1\equiv3\left(mod7\right)\Rightarrow\) ko chia hết cho 7

- Với \(n=3k+2\Rightarrow2^n+1=2^{3k+2}+1=4.8^k+1\)

\(4.8^k+1\equiv5\left(mod7\right)\Rightarrow\) không chia hết cho 7

Vậy \(2^n+1\) ko chia hết cho 7 với mọi n