So sánh : \(\left(\frac{9}{11}-0,81\right)^{2003}...\frac{1}{10^{4006}}\)
So sánh
\(\left(\frac{9}{11}-0,81\right)^{2005}\) và \(\frac{1}{10^{4010}}\)
Ta có:\(\left(\frac{9}{11}-0,81\right)^{2005}\)=\(\left(\frac{9}{11}-\frac{81}{100}\right)^{2005}=\left(\frac{9}{1100}\right)^{2005}< \left(\frac{10}{1100}\right)^{2005}=\left(\frac{1}{110}\right)^{2005}\)
Mà \(\left(\frac{1}{110}\right)^{2005}< \left(\frac{1}{100}\right)^{2005}=\left[\left(\frac{1}{10}\right)^2\right]^{2005}=\left(\frac{1}{10}\right)^{4010}=\frac{1}{10^{4010}}\)
Vậy \(\left(\frac{9}{11}-0,81\right)^{2005}< \frac{1}{10^{4010}}\)
Bài 1: Chứng tỏ rằng:
\(\left(\dfrac{9}{11}-0.81\right)^{2003}=\left(\dfrac{9}{11}\right)^{2003}.\dfrac{1}{10^{4006}}\)
Chứng minh rằng \(\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}\)
Chứng minh rằng: \(\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}\)
Có: \(\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{1100}\right)^{2008}\)
\(\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}=\frac{9^{2008}}{11^{2008}\times\left(10^2\right)^{2008}}=\frac{9^{2008}}{11^{2008}\times100^{2008}}=\frac{9^{2008}}{\left(11\times100\right)^{2008}}=\frac{9^{2008}}{1100^{2008}}=\left(\frac{9}{1100}\right)^{2008}\)
Vì: \(\left(\frac{9}{1100}\right)^{2008}=\left(\frac{9}{1100}\right)^{2008}\Rightarrow\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}\)
So sánh
\(\left(\frac{9}{11}-0.81\right)^{2005}......\frac{1}{10^{4010}}\)
\(\left(\frac{9}{11}-0,81\right)^{2005}=\left(\frac{9}{1100}\right)^{2005}=0,00\left(81\right)^{2005}\)
\(\frac{1}{10^{4010}}=\frac{1}{100^{2005}}=\left(\frac{1}{100}\right)^{2005}=0,01^{2005}\)
Vì 0,00(81)<0,01 nên \(\left(\frac{9}{11}-0,81\right)^{2005}< \frac{1}{10^{4010}}\)
Tính A= \(\left[\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\right]:\frac{2014}{2015}\)
So sánh 199110 với 99612
So Sánh M=\(\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100}\right)\) với \(\frac{11}{19}\)
Ta có :
\(M=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{99}{100}=\frac{3.8.15.....99}{4.9.16.....100}=\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4.....10.10}\)\(=\frac{1.2.3...9}{2.3...10}.\frac{3.4...11}{2.3...10}=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}< \frac{11}{19}\)
ta có M = (1- 1/4) (1- 1/9)... ( 1- 1/100)
= 3/2^2.8/3^2 ... 99/10^2
= 1.3/2^2 . 2.4/3^2 ... 9.11/10^ 2
= 1.2.3...9/ 2.3.4...10 . 3.4.5... 11/ 2.3.4... 10
= 1/10 . 11/2 = 11/20 < 11/19
Vậy M < 11/19
a)\(x+\left(x+1\right)+\left(x+3\right)+...+\left(x+2003\right)=2004\)
b)
\(\left(x+2\right)^2=\frac{1}{2}-\frac{1}{3}\)
c)\(\left(2x+1\right)^2=25\)
d)\(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
TÌM X BiẾT:
Làm 1Cau giúp mình cũng đuoc
Câu A
X + (X+1) + (X+3) +...+ (X+2003) = 2004
Số số hạng trong tổng 1 + 3 + ... + 2003 là
(2003 - 1) : 2 + 1 = 1002
Tổng dãy 1 + 3 + ... + 2003 là:
(1 + 2003) * 1002 : 2 = 1004004
=> (1003.X) + 1004004 = 2004
=> (1003.X)= 2004 - 1004004
=> 1003.X = - 1002000
X = - 1002000/1003
E chỉ giải đc đến đây thui!!!!!!!!!!!!!!! :)))
x + ( x + 1) + (x + 3) ... + (x + 2003) = 2004
x + x + x + ... + x (có 1003 x) + 1 + 3 + 5 + ... + 2003 = 2004
x . 1003 + 1004004 = 2004
x . 1003 = 2004 - 1004004
x . 1003 = -1002000
x = -1002000 : 1003
x = -999,00299 = ~-999
a,Khai triển biểu thức ra ta được:
1003x+1004004=2004\(\Leftrightarrow\)1003x=-1002000\(\Leftrightarrow\)x=\(\frac{-1002000}{1003}\)
b,\(\left(x+2\right)^2=\frac{1}{6}\Leftrightarrow\orbr{\begin{cases}x+2=\frac{1}{\sqrt{6}}\\x+2=-\frac{1}{\sqrt{6}}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{\sqrt{6}}-2\\x=-\frac{1}{\sqrt{6}}-2\end{cases}}}\)
c,\(\left(2x+1\right)^2=25\Leftrightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
d,Cộng 3 vào 2 vế ta có:
\(\frac{x-6}{7}+1+\frac{x-7}{8}+1+\frac{x-8}{9}+1=\frac{x-9}{10}+1+\frac{x-10}{11}+1+\frac{x-11}{12}+1\)
\(\Leftrightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}=\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
Vì \(\hept{\begin{cases}\frac{1}{7}>\frac{1}{10}\\\frac{1}{8}>\frac{1}{11}\\\frac{1}{9}>\frac{1}{12}\end{cases}\Rightarrow\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}>0\Rightarrow x+1=0\Leftrightarrow x=-1}\)
Bài 1: Chứng minh rằng: \(A=0,5.\left(2007^{2015}-2003^{2003}\right)\) là số nguyên.
Bài 2: Chứng minh rằng: \(B=\left(\frac{9}{11}-0,81\right)^{2004}\)viết dưới dạng thập phân thì sau dấu phẩy có ít nhất 4000 chữ số 0.
Cho B=\(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right).\left(1-\frac{1}{100}\right)\)
So sánh B với 11/21
\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right).\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{80}{81}.\frac{99}{100}\)
\(B=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{8.10}{9.9}.\frac{9.11}{10.10}\)
\(B=\frac{1.2.3...8.9}{2.3.4...9.10}.\frac{3.4.5...10.11}{2.3.4...9.10}\)
\(B=\frac{1}{10}.\frac{11}{2}\)
\(B=\frac{11}{20}>\frac{11}{21}\)