Chứng minh
a)A=3+3^2+......+3^100 chia hết cho 4
b) A chia hết cho 40
giúp mk nha >_<
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho A=2+2^2+2^3+.....+2^100
chứng minhA chia hết cho 62
Ta có số hạng của A là:(100-1):1+1=100(số)
Nên A=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+...+(2^96+2^97+2^98+2^99+2^100)
A=62+2^5*62+...+2^95*62=62*(1+2^5+...+2^95) Suy ra A chia hết cho 62.Tk mình nhé bn!
Ta có : 62 = 2 . 31
Mà A luôn chia hết cho 2 ( 1 )
A = 2 + 22 + 23 + .... + 2100
A = ( 2 + 22 + 23 + 24 + 25 ) + .... + ( 296 + 297 + 298 + 299 + 2100 )
A = 2 . ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 . ( 1 + 2 + 22 + 23 + 24 )
A = 2 . 31 + ... + 296 . 31 \(⋮\)31 ( 2 )
Từ 1 và 2 => A chia hết cho 62
Vậy A chia hết cho 62
cho A= 2+2^2+2^3+...+2^100
a, tính A
b, chứng minhA chia hết cho 3, cho 31
2A=2^2+2^3+2^4+....+2^101
2A-A=(2^2+2^3+2^4+....+2^101) - (2+2^2+2^3+...+2^100)
1A=2^101 - 2
A= 2^101-2
mình chỉ làm được câu A thôi
A=2+2^2+2^3+...+2^100
A=2^(1+2+3+...+100)
Tính (1+2+3+...+100)
([100-1]/1+1)/2+(1+100)=5050
A=2^5050
A=25502500
Chứng minh 3+....+100 chia hết cho 3
Chứng minh 1112111chia hết cho 1111
Chứng minhA=11...1(2001 chữ số 1)chia hết cho 3
Chứng minhB=11...1(2000 chữ số 1)chia hết cho 11
Cho A= \(4+4^2+4^3+..........+4^{60}\)
a) Chứng minh A chia hết cho 4
b) Chứng minh A chia hết cho 5
c) Chứng minh A chia hết cho 21
a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)
c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)
\(A=4+4^2+4^3+.....+4^{60}\)
\(A=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+....4^{57}.\left(1+4+4^2\right)\)
\(A\)\(=21+4^3.21+...4^{57}.21\)
\(\Rightarrow A⋮4;21\)
ko chia hết cho 5
a:Ta có: \(A=4+4^2+4^3+...+4^{60}\)
\(=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b: Ta có: \(A=4+4^2+4^3+...+4^{60}\)
\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)\)
\(=5\cdot\left(4+4^3+...+4^{59}\right)⋮5\)
Chứng minh rằng: 2+2^2+2^3+...2^100 chia hết cho 3 Giải: A=2.(1+2)+2^3(1+2)+...+2^99 A=2.3+2^3.3+...+2^99.3 A=3.(2+2^3+...+2^99) Vậy A chia hết cho 3 Các bạn cho mk hỏi tại sao lại có phần (1+2). Mk cần gấp nên các bạn giải thik nhanh nha
\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)
Chứng minh
A = 1 + 2 + 22 + 23 + 24 +…+ 219 + 220.chứng tỏ rằng A chia hết cho 3
kết hợp theo công thức thì số kết thúc phải là 219 hoặc là 221 mới kết hợp được
Đừng có đánh giá người khác như thế chứ ;-;
1. Chứng minh rằng với mọi a;b thuộc N:
a, 4a +b chia hết cho 13 <=> a+10b chia hết cho 13
b, 5a +2b chia hết cho 17 <=> a+4b chia hết cho 17
c, a +2b chia hết cho 5 <=> 3a-ab chia hết cho 5
2. Chứng minh rằng :
19952 + 4.1995 +5 không chia hết cho 8.
3. Một số có 3 chữ số chia hết cho 12 và chữ số hàng trăm = chữ số hàng chục. Chứng minh tổng 3 chữ số chia hết cho 12.
GIẢI RA NHÉ. MK CẦN GẤP. MAI MK PHẢI NỘP RỒI.
cho A = 2 + 22 + 23 + 24 +...+2100
a)Chứng minhA chia hết cho 15
B)tìm chữ số tận cùng của A
a) Có A=2+22+23+24+...+2100
= 2.(1+2+4+8)+25.(1+2+4+8)+29(1+2+4+8)+...+296.(1+2+4+8)
=2.15+25.15+29.15+...+296.15
=15(2+25+29+...+296)
=> A \(⋮\) 15
b)
A=2+22+23+.....+2100
= (2 + 22 + 23 + 24) + .... + (297 + 298 + 299 + 2100)
= 1.30 + 24.30 + ..... + 296.30
= 30.(1+34+...+296)
=>A\(⋮\) 30 < = > A \(⋮\) 10
< = >A có tận cùng là 0
Bài 1. Chứng minh
a, 10^ 2020 + 10^ 2021 + 10^ 2022 chia hết cho 222
b, 81^ 7 – 27^ 9 – 9^ 13 chia hết cho 45
c, 10^ 6 – 5 ^7 chia hết cho 59
d, 24^ 54 .54^ 24 .2^ 10 chia hết cho 72 ^63
e,3^ n+2 – 2^ n+2 + 3^ n – 2 ^n chia hết cho 10;
f, 3^ n+3 + 3^ n+1 + 2^ n+3 + 2^ n+2 chia hết cho 6
Bài 2.
a, Cho A = 1 + 2 + 2 ^2 + 2 ^3 + ...+ 2^ 99 . Chứng tỏ A chia hết cho 3; A chia 7 dư 1.
b, Cho B = 2 + 2^ 2 + 2^ 3 + ...+ 2^ 99 + 2^ 100 . Hỏi A có chia hết cho 6 không?
Bài 3. Cho A = 9^ 7 + 3^ 13 + 2. Hỏi A có chia hết cho 10 không?