chứng minh
2019(a+c)/2019a=b+d/b
cho 3 số a,b,c thỏa mãn abc=2019. tính A=2019a/ab+2019a+2019 + b/bc +c+2019 + c/ac+c+2019
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\) Chứng minh:
a) \(\frac{a+2019b}{a-2019b}=\frac{c+2019d}{c-2019d}\)
b)\(\frac{2019\left(a+c\right)}{2019a}=\frac{b+d}{b}\)
cho 3 số a,b,c thỏa mãn abc=2019. tính A=2019a/ab+2019a+2019 + b/bc +c+2019 + c/ac+c+2019
Cho a,b,c>0 thỏa mãn a+b+c=2019
Chứng minh rằng \(\frac{a}{a+\sqrt{2019a+bc}}+\frac{b}{b+\sqrt{2019b+ac}}+\frac{c}{c+\sqrt{2019c+ab}}\le1\)
Ta có: \(2019a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(c+a\right)\ge\left(\sqrt{ab}+\sqrt{ac}\right)^2\)
\(\Rightarrow a+\sqrt{2019a+bc}\ge a+\sqrt{ab}+\sqrt{bc}=\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\Rightarrow\frac{a}{a+\sqrt{2019a+bc}}\le\frac{a}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự cộng vào suy ra điều phải chứng minh
Từ tỉ lệ thức a/b=c/d chứng minh (2019a+b)/a=(2019c+d)/c (a,b,c,d khác 0)
cho a,b,c thoả mãn abc=2019
tính P= 2019a^2bc/ab+2019a+2019
+ ab^2c/bc+b+2019
+ abc^2/ ac+c+1
cho 3 số a,b,c thỏa mãn abc =2005.Tính P=(2019a/ab+2019a+2019)+(b/bc +b +2079)+(c/ac+c+1)
cho 3 số a,b,c thỏa mãn abc =2005.Tính P=(2019a/ab+2019a+2019)+(b/bc +b +2079)+(c/ac+c+1)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\)Chứng minh rằng
\(\dfrac{2018a-2019b}{2019c+2020d}\)=\(\dfrac{2018c-2018c}{2019a+2020b}\)
Sửa đề: \(\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2020a}{2020b}=\dfrac{2020c}{2020d}=\dfrac{2019a}{2019c}=\dfrac{2019b}{2019d}=\dfrac{2018a}{2018c}=\dfrac{2018b}{2018d}=\dfrac{2018a-2019b}{2018c-2019d}=\dfrac{2019a+2020b}{2019c+2020d}\\ \Leftrightarrow\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)
\(\dfrac{2018a-2019b}{2019c-2020d}=\dfrac{2018c-2018c}{2019a+2020b}\)
Sao .... ;-; ;-;