Chứng minh số abc+bac+cba ko là số chính phương
Bài 1. Chứng minh rằng: a) A = abc + bca + cba không là số chính phương. b) ababab không là số chính phương.
Bài 2. Tìm tất cả các số có bốn chữ số vừa là số chính phương, vừa là lập phương của một số tự nhiên.
Bài 3. Tìm số nguyên tố sao cho + là số chính phương.
Chứng minh rằng:
a) A = abc + bca + cba không là số chính phương.
b) ababab không là số chính phương.
a) A = abc + bca + cab
=> A = ( 100a + 10b + c ) + ( 100b + 10c + a)+ ( 100c + 10a + b)
=> A = 100a + 10b + c + 100b + 10c + a + 100c + 10a +b
=> A = 111a + 111b + 111c
=> A = 111( a+b+c)
vì 0< a+b+c ≤ 27 nên a + b + c không chia hết cho 37
mặt khác ( 3 ; 37)=1 nên 3( a+b+c) không chia hết cho 37
=> A không phải là số chính phương
b)
ababab=ab.10101
để ab là sô chính phương thì ab = 10101
mà ab là số có 2 chứ số
⇒ ababab không phải là số chính phương
no la b 3 ban oi
tồn tại hay không số tự nhiên có 3 chữ số ABC sao cho:
S=ABC+ACB+BAC+BCA+CAB+CBA là số chính phương
(các số mình viết hoa là các số tự nhiên có 3 chữ số)
Ai làm được mình xin ik(hihi):)))
\(S=\overline{abc}+\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}\), ta có \(a,b,c\ne0\).
\(S=100a+10b+c+100a+10c+b+...+100c+10b+a\)
\(S=222\left(a+b+c\right)\)
Ta thấy \(222=2.3.37\) nên muốn \(S\) là số chính phương thì \(a+b+c=2^x.3^y.37^z\) với \(x,y,z\) là các số tự nhiên lẻ. Do đó \(x,y,z\ge1\) hay \(a+b+c\ge222\), vô lí.
Vậy không tồn tại số tự nhiên có 3 chữ số \(a,b,c\) thỏa mãn S là số chính phương.
mà Lê Song Phương ơi
mình cần bạn giải chi tiết ra đoạn từ dòng số 2 xuống dòng số 3 mình giải được:
2x(aaa+bbb+ccc)
2x111x(a+b+c)
222x(a+b+c)
đk bạn
cho 3 số abc bac cba chứng minh 3 số đó chia hết cho 37.
Tồn tại hay ko 1 STN có 3 chữ số abc có chữ số hàng trăm nhỏ hơn chữ số hàng đơn vị, mà hiệu của cba - abc là 1 số chính phương.
a) Chứng minh rằng số chính phương khi chia cho 3 ko thể dự 2
b) Chứng minh tổng của 3 số chính phương liên tiếp ko thể là một số chính phương
Gọi số chính phương đã cho là a^2 (a là số tự nhiên)
* C/m a^2 chia 3 dư 0 hoặc dư 1
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn?
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé:
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên)
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1.
Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0
(2k+1) 2k (2k-1)
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương
Mình ko chắc đã đúng đâu
cho S = abc + bca + cba . P
chứng Minh rằng S không Phải là số chính phương
tìm tất cả các số có 3 chữ số sao cho nếu số cần tìm là abc thì : abc - cba là 1 số chính phương
100<=abc <=999
100<= n^2-1 <=999
11<=n <=32
100<=cba <=999
100<= (n-2)^2 <=999
11<=n-2 <=32
13<=n <=34
=> 13 <=n <=32 (*)
abc -cba =99(a-c) =n^2 -1 -(n-2)^2 =4n -5
4n-5 =99 t (t thuoc z)
n= 99k +26 (k in z)
(*)=> k =0 (duy nhat)
n=26
abc =26^2 -1 =675
ko chắc
Bạn Anh thật ngốc hình như sai rồi (không có ý chê trách) bạn thử lắp vào đề xem
675-576=99 mà 99 không phải là số chính phương
Cho S =abc +bac +cab .Chứng minh rằng s không là 1 số chính phương
S=abc+bac+cab
=(100a+10b+c)+(100b+10a+c)+(100c+10a+b)
=(100a+10a+a)+(100b+10b+b)+(100c+10c+c)
=111a+111b+111c=111(a+b+c)=3.37.(a+b+c)
Giả sử S là SCP,mà 37 nguyên tố
=>S chia hết cho 37.Nhưng a+b+c ko chia hết cho 37
Vậy trái giả thiết
=>đpcm