3x = 4y = 2z và 2x + y − z = −5
tìm x, y, z biết :
a) 3x = 4y -2x = 7z - 4y và x + y - 2z = 10
b) 3x = 4y = 5z - 3x - 4y và 2x + y = z - 38
Tìm x,y biết :
6) 3x=4y và 2x + 3y = 7
7) \(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}\) và x-y+z=36
8) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}\) và 3x-2y+2z = 24
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
→Cho \(\dfrac{x}{3}=\dfrac{y}{4}\)và \(\dfrac{y}{5}=\dfrac{z}{6}\)tính A=\(\dfrac{2x+3y+4z}{3x+4y+2z}\)←
Đặt \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\)
=>x=15k; y=20k; z=24k
\(A=\dfrac{2\cdot15k+3\cdot20k+4\cdot24k}{3\cdot15k+4\cdot20k+2\cdot24k}=\dfrac{186}{173}\)
\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=\dfrac{2x+3y+4z}{30+60+96}=\dfrac{3x+4y+2z}{45+80+48}\\ \Leftrightarrow A=\dfrac{2x+3y+4z}{3x+4y+2z}=\dfrac{186}{173}\)
tìm x,y,z biết: 2x-4y/3=4z-3x/2=3y-2z/4 và 2x-y+z=27
\(\frac{2x-4y}{3}=\frac{4z-3x}{2}=\frac{3y-2z}{4}.\)VÀ \(2x-y+z=27\)
\(\frac{2x-4y}{3}=\frac{4z-3x}{2}=\frac{3y-2z}{4}=\frac{6x-12y}{9}\)\(=\frac{8z-6x}{4}=\frac{12y-8z}{16}\)
\(=\frac{6x-12y+8z-6x+12y-8z}{9+4+16}\)\(=\frac{0}{29}=0\)
\(\Rightarrow2x=4y\Rightarrow\frac{x}{4}=\frac{y}{2}\)
\(\Rightarrow4z=3x\Rightarrow\frac{z}{3}=\frac{x}{4}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)
ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=\frac{2x-y+z}{8-2+3}\)\(=\frac{27}{9}=3\)
\(\frac{x}{4}=3\Rightarrow x=12\)
\(\frac{y}{2}=3\Rightarrow y=6\)
\(\frac{z}{3}=3\Rightarrow z=9\)
VẬY X = 12, Y = 6, Z = 9
2x=3y=10z-2x và x-y+z= -33
3x-2y=0, 4y-3z=2z và x+y+z= -39
2x-4y /3= 4z-3x /2= 3y-2z /4 và 2x-y+z=27
\(\frac{2x-4y}{3}=\frac{4z-3x}{2}=\frac{3y-2z}{4}\)
\(\Leftrightarrow\frac{6x-12y}{3^2}=\frac{8z-6x}{2^2}=\frac{12y-8z}{4^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{6x-12y}{3^2}=\frac{8z-6x}{2^2}=\frac{12y-8z}{4^2}=\frac{6x-12y+8z-6x+12y-8z}{3^2+2^2+4^2}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{6x-12y}{3^2}=0\\\frac{8z-6x}{2^2}=0\\\frac{12y-8z}{4^2}=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2x=4y\\4z=3x\\3y=2z\end{cases}}\) \(\Leftrightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)
\(\Leftrightarrow\frac{2x}{8}=\frac{y}{2}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{y}{2}=\frac{z}{3}=\frac{2x-y+z}{8-2+3}=\frac{27}{9}=3\)
\(\Leftrightarrow\hept{\begin{cases}\frac{2x}{8}=3\\\frac{y}{2}=3\\\frac{z}{3}=3\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=12\\y=6\\z=9\end{cases}}\)
Vậy \(\left(x,y,z\right)=\left(12,6,9\right)\)
a,3x=4y-3y=7z-4y và x+y-2z=10
b,2x=3y-2x=5z-3y và x+y+z=53
c,5x-3y=4y=3z+10x và x+y+z=28
d,4x-3z=6y-x=z và 2x+3y+4z=19
Tim x, y, z biết :
a) 2x = 5y và 4y - x= 4
b) 3:4:5 = x:y:z và 3x – 2z = 8
c) x:y:z = 2:5:3 và yz = 60 d) 2x = 6y =7z và x +2y – z = 6
e) 3x = 4y; 3y = 2z và 2x + 5z = 13 f) x + y = x.y = x : y