Tìm GTNN của \(A=\frac{x^3-2x^2+4x-8}{\left(x-2\right)\left(x^2+1\right)+2x\left(x-2\right)}\)
Cho \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
a) Rút gọn.
b) Tìm GTNN của P khi x>1
Em cần câu b ạ. Cảm ơn ạ.
a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+4\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{\left(x^2-2x\right)\left(x-2\right)}{2\left(x-2\right)\left(x^2+4\right)}+\dfrac{4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\dfrac{x^3-x^2-2x^2+4x+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\dfrac{x^3+x^2+4x}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{x\left(x^2+x+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{\left(x^2+x+4\right)\left(x+1\right)}{2x\left(x^2+4\right)}\)
Giúp mình với :
a)Tìm GTNN của A = \(\left|x^2-x+1\right|+\left|x^2-x-2\right|\)
b ) tìm GTNLN của D =\(\frac{x+2}{\left|x\right|}\)với x khác 0 và x thuộc Z
c) tìm GTLN của F=\(\frac{7x-8}{2x-3}\)với x thuộc N
d) Timf GTNN của G=\(x\left(x+1\right)+x+2\)
e) Tìm GTLN của J = \(x^4+2x^2-7\)
f) Tìm GTLN của biểu thức N = \(\left(x+2\right)^2-4x+2\)
G ) tìm GTLN của T= \(4\left(3-\left|x-1\right|\right)+\left|1-x\right|\)
\(A=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
Tìm x thuộc Z để A thuộc Z
1)2x(25x-4)-(5x-2)(5x+1)=8 / 5)\(2\left(x-2\right)-3\left(3x-1\right)=\left(x-3\right)\)
2)x(4x-3)-(2x-2)(2x-1)=5 / 6)\(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
3)\(\frac{5}{2x+3}+\frac{3}{9-x^2}=\frac{8}{7\left(x=3\right)}\) / 7)\(\frac{5x-2}{6}+\frac{3-4x}{2}=2-\frac{x+7}{3}\)
4)\(\frac{2}{3\left(x-2\right)}+\frac{5}{12-3x^2}=\frac{3}{4\left(x+2\right)}\) / 8)\(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
Đây là lớp 8 nha các b giúp mk với
Do mk viết nhầm
Rút gọn biểu thức sau: A=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+4\right)\left(3-x\right)}\)
Tìm GTNN của các biểu thức sau:
A = \(\left(x^2-x\right)\left(x^2+3x+2\right)\)
B = \(x^4+\left(x-2\right)^2+6x^2\left(x-2\right)^2\)
C = \(\frac{2x^2-6x+5}{\left(x-1\right)^2}\)
D = \(4x^2+4x-6\left|2x+1\right|+6\)
Tìm cả GTLN và GTNN
A = \(\frac{3-4x}{x^2+1}\)
Em làm bài 2 nha!
\(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+4x+A-3=0\) (1)
+)\(A=0\Rightarrow x=\frac{3}{4}\)
+) A khác 0 thì (1) là pt bậc 2.
\(\Delta'=\left(2\right)^2-A\left(A-3\right)\ge0\Leftrightarrow4-A^2+3A\ge0\Leftrightarrow-1\le A\le4\)
Vậy...
Bài 1: (bài nào nghĩ ra thì em làm trước)
C = \(\frac{2x^2-6x+5}{\left(x-1\right)^2}\). Đặt x - 1 = y >0 thì x = y + 1 >1
Khi đó \(C=\frac{2\left(y+1\right)^2-6\left(y+1\right)+5}{y^2}=\frac{2y^2-2y+1}{y^2}\)
\(=\frac{1}{y^2}-\frac{2}{y}+2\). đặt \(\frac{1}{y}=t>0\). \(C=t^2-2t+2=\left(t-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi t = 1 suy ra y = 1 suy ra x = 2
Vậy Min C = 1 khi x = 2
Giải các phương trình sau :
a) \(x^4-\left(x^2+2\right)=4\)
b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
c) \(\frac{2x-10}{4}=5+\frac{2-3x}{6}\)
d) \(\frac{2x}{\left(x-3\right)\left(x+1\right)}+\frac{x}{2\left(x-3\right)}=\frac{x}{2x+2}\)
e) \(\left(\frac{x+2}{x}\right)^2+\left(\frac{x}{x+2}\right)^2=2\)
f) \(\left(x-a\right)\left(x+a\right)+2x+a^2=-1\)
g) \(\frac{x-a}{2a}+\frac{x-2a}{3a}+\frac{x-3a}{4a}+\frac{x-4a}{5a}=-4\)
h) \(\left(x^2-3x+4\right)^2=\left(x^2-2x+3\right)\left(x^2-4x+5\right)\)
i) \(\frac{x^2-4x+12}{x^2-4x+6}=x^2-4x+8\)
1 Giải phương trình
\(a.\left(x+3\right)\left(x-2\right)+2\left(x+1\right)^2=\left(x-3\right)^2-2x^2+4x\)
\(b.\left(x+1\right)^3-\left(x+2\right)\left(x-4\right)=\left(x-2\right)\left(x^2+2x+4\right)+2x^2\)
\(c.\frac{x^2+2x+1}{x2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
\(a.\Leftrightarrow x^2+x-6+2x^2+4x+2=x^2-6x+9-2x^2+4x\)
\(\Leftrightarrow4x^2+7x-13=0\)(pt vô nghiệm)
\(b.\Leftrightarrow x^3+3x^2+3x+1-x^2+2x+8=x^3-8+2x^2\)
\(\Leftrightarrow5x=-17\Rightarrow x=\frac{-17}{5}\)
Đặt \(t=x^2+2x+2\left(t\ge1\right)\)
\(c.\Leftrightarrow\frac{t-1}{t}+\frac{t}{t+1}=\frac{7}{6}\)\(\Leftrightarrow\frac{t^2-1+t^2}{t^2+t}=\frac{7}{6}\)\(\Leftrightarrow12t^2-6=7t^2+7t\)
\(\Leftrightarrow5t^2-7t-6=0\Rightarrow\orbr{\begin{cases}t=2\left(tm\right)\\t=\frac{-3}{5}\left(l\right)\end{cases}}\)
\(\Rightarrow x^2+2x+2=2\Rightarrow x=-2\)
Câu 1: Rút gọn các biểu thức sau:
1. \(\left(x+y-z\right)^2+\left(y-z\right)^2+2z\left(z-y\right)\)
2. \(\left(3x+4\right)^2+\left(x-4\right)^2+2\left(3x+4\right)\left(x-4\right)\)
3.\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
4. \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)\)
5. \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Câu 2: Tìm x
1. \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=1\)
2. \(\left(3x+1\right)^2+\left(5x-2\right)^2=34\left(x+2\right)\left(x-2\right)\)
3. \(\left(x+3\right)^2+\left(x-2\right)^2=2x^2\)
4. \(4x^2-9-x\left(2x-3\right)=0\)
5. \(4x^2-12x+9=0\)
Câu 3: Tìm GTNN
D = \(\left(2x-1\right)^2+\left(x+2\right)^2\)
Câu 4: Cho \(a^2+b^2+c^2=ab+bc+ac\) . Chứng minh rằng a=b=c