Tìm các số thực không âm a và b thỏa mãn
\(\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)
tìm các số thực a và b thỏa mãn
\(\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)
giúp với nha mơn nhiều
Ta có: \(a^2+b+\frac{3}{4}=a^2+\frac{1}{4}+b+\frac{1}{2}\ge a+b+\frac{1}{2}\)
Và \(b^2+a+\frac{3}{4}\ge a+b+\frac{1}{2}\)
\(\Rightarrow(a^2+b+\frac{3}{4})(b^2+a+\frac{3}{4})\ge(a+b+\frac{1}{2})^2\)
Cần chứng minh \((a+b+\frac{1}{2})^2\ge\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)
\(\Leftrightarrow a^2+b^2+\frac{1}{4}+a+b+2ab\ge4ab+a+b+\frac{1}{4}\Leftrightarrow(a-b)^2\ge0\)
BDT cuối đúng hay \(VT\ge VP\)
Nên xảy ra khi \(a=b=\frac{1}{2}\)
cho các số thực a,b không âm:
Chứng minh rằng: \(\left(a^2+b+\frac{3}{4}\right)+\left(b^2+a+\frac{3}{4}\right)\ge\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)
Trời ! Sao trên đời này có nhiều đứa ngu quá vậy ?
Trời ! Sao trên đời này có nhiều người chảnh quá vậy ?
https://toanmath.com/2016/07/ki-thuat-su-dung-bat-dang-thuc-co-si-nguyen-cao-cuong.html
Cho ba số thực dương x,y,z thỏa mãn \(\frac{ac\left(b-1\right)}{b\left(a+c\right)}=\frac{4}{3}\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{2\left(a+b\right)^2}{2a+3b}+\frac{\left(b+2c\right)^2}{2b+c}+\frac{\left(2c+a\right)^2}{c+2a}\)
Tìm \(a,b\ge0\) thỏa mãn \(\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)
Theo bất đẳng thức Cô-Si \(a^2+\frac{1}{4}\ge a,b^2+\frac{1}{4}\ge b\to\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)\)
\(\ge\left(a+b+\frac{1}{2}\right)\left(a+b+\frac{1}{2}\right)=\left(a+b+\frac{1}{2}\right)^2\) Dấu bằng xảy ra khi và chỉ khi \(a=b=\frac{1}{2}.\)
Áp dụng bất đẳng thức quen thuộc \(\left(x+y\right)^2\ge4xy,\) với \(x=a+\frac{1}{4},y=b+\frac{1}{4}\) ta được
\(\left(a+b+\frac{1}{2}\right)^2=\left(a+\frac{1}{4}+b+\frac{1}{4}\right)^2\ge4\left(a+\frac{1}{4}\right)\left(b+\frac{1}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right).\) Dấu bằng xảy ra khi và chỉ khi \(a+\frac{1}{4}=b+\frac{1}{4}\Leftrightarrow a=b.\)
Vậy vế trái lớn hơn hoặc bằng vế phải. Do đó mà các dấu bằng xảy ra, từ đây ta được \(a=b=\frac{1}{2}.\)
a) Tìm m để pt \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\) có 4 nghiệm thỏa: \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)
b) Tìm các số \(a,b,c\ge0\)sao cho: \(\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
Cho 3 số thực dương a;b;c thỏa mãn \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)
Tìm GTLN của \(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Bài 1: Cho a,b,c dương
a) Tìm Max \(P=\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\)
b) Tìm Max \(Q=\frac{a^2}{5a^2+\left(b+c\right)^2}+\frac{b^2}{5b^2+\left(c+a\right)^2}+\frac{c^2}{5c^2+\left(a+b\right)^2}\)
Bài 2: Cho x,y,z là các số thực không âm thỏa mãn \(x+y+z=\frac{3}{2}\).Chứng minh rằng \(x+2xy+4xyz\le2\)
Bài 3: Cho a,b thỏa mãn \(\left(x+y\right)^3+4xy\ge2\). Tìm Min \(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1\)
Bài 4: Cho x,y,z >0: \(x\left(x+y+z\right)=3yz\). Chứng minh: \(\left(x+y\right)^3+\left(x+z\right)^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\le5\left(y+z\right)^3\)
Bài 5:Cho a,b,c không âm thỏa mãn \(a^2+b^2+c^2+abc=4\). CMR: \(a+b+c\le3\)
Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)
Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)
Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*
Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)
Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)
Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))
\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)
\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2
Bài 4: Theo giả thiết, ta có: \(x\left(x+y+z\right)=3yz\)(*)
Vì x > 0 nên chia cả hai vế của (*) cho x2, ta được: \(1+\frac{y}{x}+\frac{z}{x}=3.\frac{y}{x}.\frac{z}{x}\)
+) \(\left(x+y\right)^3+\left(y+z\right)^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\le5\left(y+z\right)^3\)\(\Leftrightarrow\left(1+\frac{y}{x}\right)^3+\left(\frac{y}{x}+\frac{z}{x}\right)^3+3\left(1+\frac{y}{x}\right)\left(1+\frac{z}{x}\right)\left(\frac{y}{x}+\frac{z}{x}\right)\le5\left(\frac{y}{x}+\frac{z}{x}\right)^3\)(Chia hai vế của bất đẳng thức cho x3)
Đặt \(s=\frac{y}{x},t=\frac{z}{x}\left(s,t>0\right)\)thì giả thiết trở thành \(1+s+t=3st\)và ta cần chứng minh \(\left(1+s\right)^3+\left(1+t\right)^3+3\left(s+t\right)\left(1+s\right)\left(1+t\right)\le5\left(s+t\right)^3\)(**)
Ta có: \(1+s+t=3st\le\frac{3}{4}\left(s+t\right)^2\Leftrightarrow3\left(s+t\right)^2-4\left(s+t\right)-4\ge0\Leftrightarrow\left[3\left(s+t\right)+2\right]\left(a+b-2\right)\ge0\Rightarrow s+t\ge2\)(do \(3\left(s+t\right)+2>0\forall s,t>0\))
Đặt \(s+t=f\)thì \(f\ge2\)
(**)\(\Leftrightarrow4f^3-6f^2-4f\ge0\Leftrightarrow f\left(2f+1\right)\left(f-2\right)\ge0\)*đúng với mọi \(f\ge2\)*
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z
CHo các số thực dương a,b thỏa mãn ab=1. Tìm GTNN của\(A=\left(2a+2b-3\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)