Lời giải:
Áp dụng BĐT AM-GM:
\((2a+\frac{1}{2})(2b+\frac{1}{2})=(a^2+\frac{1}{4}+b+\frac{1}{2})(b^2+\frac{1}{4}+a+\frac{1}{2})\)
\(\geq (a+b+\frac{1}{2})(b+a+\frac{1}{2})\)
\(\Leftrightarrow 4ab+a+b+\frac{1}{4}\geq a^2+b^2+a+b+2ab+\frac{1}{4}\)
\(\Leftrightarrow a^2+b^2-2ab\leq 0\)
\(\Leftrightarrow (a-b)^2\leq 0\)
Mà $(a-b)^2\geq 0, \forall a,b>0$
Do đó $(a-b)^2=0$
$\Rightarrow a=b$
Dấu "=" xảy ra khi $a^2=b^2=\frac{1}{4}$
$\Rightarrow a=b=\frac{1}{2}$ (do $a,b>0$)