tìm cặp số nguyên (x,y) thỏa mãn: xy + 3x - 2y = 7
Tìm các cặp số nguyên ( x ; y ) thỏa mãn
a ) y ( x - 2 ) + 3x - 6 = 2
b ) xy + 3x - 2y - 7 = 0
#) Giải :
y( x -2) + 3x - 6 = 0
y( x - 2) + 3( x - 2) = 0
( y + 3 )( x - 2) = 0
\(\Rightarrow\orbr{\begin{cases}y+3=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=-3\\x=2\end{cases}}\)
Mk cx hoq chak đâu ạ :33
#) Giải :
b) xy + 3x - 2y - 7 = 0
xy + 3x - 2y - 6 = 1
x( y + 3) -2(y + 3) = 1
( x-2)( y+3) = 1
Ta có bảng sau :
x - 2 -1 1
y+ 3 -1 1
x 1 3
y -4 -2
Vậy ( x;y) thuộc {(1;3);(-4;-2)}
Chúc bn hok tốt ạ :33
a) y(x-2) + 3x - 6 = 2
=> y(x-2) + 3(x-2) = 2
=> (x-2)(y+3) = 1.2 = (-1).(-2)
-TH1: x - 2 = 1 --> x = 3
y +3 = 2 --> y = -1
-TH2: x - 2 = (-1) --> x = 1
y + 3 = (-2) --> y = -5
-TH3: x - 2 = 2 --> x = 4
y + 3 = 1 --> y = -2
-TH4: x - 2 = (-2) --> x = 0
y + 3 = (-1) --> x = -4
Vậy...
b) xy + 3x -2y - 7 = 0
=> xy + 3x - 2y - 6 = 1
=> (xy+3x) - (2y+6) = 1
=> x(y+3) - 2(y+3) = 1
=> (y+3)(x-2) = 1
-TH1: x - 2 = 1 --> x = 3
y + 3 = 1 --> y = -2
-TH2: x - 2 = (-1) --> x = 1
y + 3 = (-1) --> y = -4
Vậy...
Tìm các cặp số nguyên (x;y) thỏa mãn xy+3x-2y=11
xy+3x-2y=11
=>x(y+3)=11+2y
=>x=\(\dfrac{2y+11}{y+3}\). Vì x là số nguyên nên:
2y+11 ⋮ y+3
=>2(y+3)+5 ⋮ y+3
=>5 ⋮ y+3
=>y+3∈Ư(5)
=>y+3∈{1;-1;5;-5}
=>y∈{-2;-4;2;-8}
=>x∈{7;-3;3;1).
- Vậy các cặp số (x;y) là (7;-2) , (-3;-4) , (3;2) ; (1;-8)
Tìm cặp số nguyên (x,y) thỏa mãn đẳng thức
a) xy+3x-2y-7=0
b)5y-2x^2-2y^2+2=0
a) \(xy+3x-2y-7=0\)
\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)
\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)
mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị:
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | -1 |
y | -2 | -4 |
Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).
b) \(5y-2x^2-2y^2+2=0\)
\(\Leftrightarrow16x^2+16y^2-40y-16=0\)
\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)
Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.
Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)
mà \(\left(4x\right)^2⋮16\)nên ta có:
\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)
Tìm các cặp số nguyên (x;y) thỏa mãn : \(x^2y+xy-2x^2-3x+4=0\)
Tìm các cặp số nguyên tố x,y thỏa mãn xy+2y-3x-4=0
Tìm cặp số (x, y) nguyên âm thỏa mãn xy + 3x + 2y + 6 = 0 và |x| + |y| =5
TA PHAN TICH CAI PHAN DAU TRUOC
=X(Y+3)+2Y=-6(VI 0-6)
=X(Y+3)+2(Y+3)-6=-6
=X(Y+3)+2(Y+3)=-6+6
(Y+3)(X+2)=0
VI X,Y LA SO NGUYEN AM
(Y+3)VA (X+2)DEU BANG 0
Y=-3CON X=-2
x=-2;y=-3
không cần phần trị tuyệt đối đâu
Tìm các cặp số nguyên ( x, y) thỏa mãn đẳng thức sau:
xy + 3x - 2y - 7 = 0
xy + 3x - 2y - 7 = 0
\(\Rightarrow\) x(y + 3) - 2(y + 3) - 1 = 0
\(\Rightarrow\) (x - 2)(y + 3) = 1
\(\Rightarrow\) \(\orbr{\begin{cases}x-2=y+3=1\\x-2=y+3=-1\end{cases}}\)
\(\Rightarrow\) \(\orbr{\begin{cases}x=3;y=-2\\x=1;y=-4\end{cases}}\)
Tìm cặp (x ; y) nguyên âm thỏa mãn xy + 3x + 2y + 6 = 0 và |x| + |y| = 5.
\(pt\Leftrightarrow\int^{\left(x+2\right)y+3x+6=0}_{\left|y\right|+\left|x\right|=5}\Rightarrow\int^{\left(x+2\right)y+3x-0+6=0}_{\left|y\right|+\left|x\right|-5=0}\)
=>(y+3)(x+2)=0(vì x,y nguyên âm )
TH1:y+3=0
=>y=-3
TH2:x+2=0
=>x=-2
vậy (x ; y) nguyên âm thỏa mãn là {-2;-3}
tìm cặp(x;y) nguyên âm thỏa mãn xy + 3x + 2y + 6 = 0 và /x/ +/y/ = 5
mk chỉ cho đáp án thui nha
kết quả:-2;-3 tink cho mk nha bn