Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Chí Nghĩa
Xem chi tiết
Nguyễn Hoàng Phong
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Thị Ngọc Anh
10 tháng 1 2022 lúc 8:36

Gs a+b+c>1/a+1/b+1/c nhưng không t/m một và chỉ một trong 3 số a,b,c lớn hơn 1 TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1) TH2 có 2 số lớn hơn 1 Gs a>1,b>1,c<1 suy ra a-1>0,b-1>0,c-1<0 suy ra (a-1)(b-1)(c-1)<0 suy ra abc+a+b+c-(ab+bc+ca)-1<0 suy ra a+b+c<ab+bc+ca suy ra a+b+c<abc/c+abc/a+abc/b suy ra a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai) suy ra đpcm

Nguyễn Hồ Khả Hân
Xem chi tiết
Nguyễn Nhật Minh
15 tháng 12 2015 lúc 18:05

\(\left(a+b+c\right)^2=2016^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+cb+ca\right)=2016^2\)

\(\Leftrightarrow A=a^2+b^2+c^2=2016^2-2\left(ab+cb+ca\right)\) chia hết cho 2

=> A là 1 số chẵn

Vân Anh
Xem chi tiết
ctk_new
31 tháng 10 2019 lúc 9:43

ADTCDTSBN:

\(\frac{a+b}{b+c}=\frac{b+c}{c+a}=\frac{c+a}{a+b}=\frac{2\left(a+b+c\right)}{2\left(a+b+c\right)}=1\)

\(\Rightarrow\hept{\begin{cases}a+b=b+c\\b+c=c+a\\c+a=a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=c\\a=b\\b=c\end{cases}}\)

\(\Rightarrow a=b=c\left(đpcm\right)\)

Khách vãng lai đã xóa
Valentine
Xem chi tiết
Sóii Trắngg
Xem chi tiết
ntkhai0708
17 tháng 4 2021 lúc 20:29

Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$

$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$

$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$

Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$

Suy ra $a+b+c+d+e \vdots 2$

$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$

suy ra $a+b+c+d+e$ là hợp số

Xem chi tiết
[̲̅c̲̅]ò ッ [̲̅k̲̅][̲̅i̲...
25 tháng 10 2021 lúc 7:36

Fuck You Bitch
Xem chi tiết
Kamato Heiji
Xem chi tiết
Hồng Quang
15 tháng 2 2021 lúc 13:01

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

Hồng Quang
15 tháng 2 2021 lúc 13:11

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D