Cho các số a,b,c thỏa mãn
a+b/b+c = b+c/c+a= c+a/a+b
Chứng tỏ rằng a=b=c
Chứng tỏ rằng ko tồn tại các số nguyên a,b,c thỏa mãn a(b-c)(b+c-a)^2+c(a-b)(a+b-c)^2=2019^2020
Cho 3 điểm A, B, C thỏa mãn AB=BC=AC. Chứng tỏ rằng A, B, C là cho 3 điểm A, B, C thỏa mãn AB=BC=AC. Chứng tỏ rằng A, B, C là 3 điểm của một tam giác
Cho các số thực a,b,c thỏa mãn \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\). Chứng tỏ rằng trong 3 số a,b,c tồn tại a,b,c tồn tại 1 số không âm, tồn tại 1 số không dương.
Gs a+b+c>1/a+1/b+1/c nhưng không t/m một và chỉ một trong 3 số a,b,c lớn hơn 1 TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1) TH2 có 2 số lớn hơn 1 Gs a>1,b>1,c<1 suy ra a-1>0,b-1>0,c-1<0 suy ra (a-1)(b-1)(c-1)<0 suy ra abc+a+b+c-(ab+bc+ca)-1<0 suy ra a+b+c<ab+bc+ca suy ra a+b+c<abc/c+abc/a+abc/b suy ra a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai) suy ra đpcm
cho a,b,c là các số nguyên thỏa mãn a+b+c=2016 . Chứng tỏ rằng A=a2 +b2+c2 là một số chẵn
\(\left(a+b+c\right)^2=2016^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+cb+ca\right)=2016^2\)
\(\Leftrightarrow A=a^2+b^2+c^2=2016^2-2\left(ab+cb+ca\right)\) chia hết cho 2
=> A là 1 số chẵn
cho các số a, b, c thỏa mãn
\(\frac{a+b}{b+c}\)= \(\frac{b+c}{c+a}\)= \(\frac{c+a}{a+b}\)
chứng tỏ rằng a = b = c
ADTCDTSBN:
\(\frac{a+b}{b+c}=\frac{b+c}{c+a}=\frac{c+a}{a+b}=\frac{2\left(a+b+c\right)}{2\left(a+b+c\right)}=1\)
\(\Rightarrow\hept{\begin{cases}a+b=b+c\\b+c=c+a\\c+a=a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=c\\a=b\\b=c\end{cases}}\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Câu 2.
a) Cho a, b, c> 0. Chứng tỏ rằng M= (a/a+b) + ( b/b+c) + (c/c+a) không là số nguyên
b) Cho a,b,c thỏa mãn a+b+c = 0. Chứng minh rằng ab + bc + ca < hoặc bằng 0
Cho các số nguyên dương a,b,c,d,e thỏa mãn: \(a^2+b^2+c^2+d^2+e^2\) chia hết cho 2 . Chứng tỏ rằng a+b+c+d+e là hợp số
HELP ME, PLEASE!
Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$
$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$
$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$
Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$
Suy ra $a+b+c+d+e \vdots 2$
$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$
suy ra $a+b+c+d+e$ là hợp số
Cho các số thực \(a, b, c\) thỏa mãn \(a³ - b² - b = b³ - c² - c = c³ - a² - a = \) \(\dfrac{1}{3}\) Chứng minh rằng \(a = b = c \)
1. Cho các số nguyên a, b, c, d thỏa mãn: a + b = c + d; ab + 1 = cd
Chứng tỏ rằng: c = d
2. Có tồn tại cặp số nguyên (a; b) nào thỏa mãn đẳng thức sau:
a) -252a + 72b = 2013
b) 512a - 104 = -2002
3. Cho m và n là các số nguyên dương:
A = \(\frac{2+4+6+...+2m}{m}\)
B = \(\frac{2+4+6+...+2n}{n}\)
Biết A<B, hãy so sánh m và n
4. Cho a, b, c, d thuộc Z thỏa mãn: a - ( b + c ) = d. Chứng tỏ rằng: a - c = b + d
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D