Tìm số tự nhiên a lớn nhất sao cho 13,15,61 chia cho a đều dư 1 .
tìm số tư nhiên a lớn nhất sao cho 13,15,61 chia a đều dư 1
cảm ơn ...!!!!!
Đây là toán nâng cao chuyên đề lập số theo điều kiện cho trước, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Vì 13; 15; 61 chia \(x\) đều dư 1 nên 13; 15; 61 khi đồng thời bớt đi 1 sẽ trở thành số chia hết cho \(x\)
Từ lập luận trên ta có:
\(\left\{{}\begin{matrix}13-1⋮x\\15-1⋮x\\61-1⋮x\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}12⋮x\\14⋮x\\60⋮x\end{matrix}\right.\) ⇒ \(x\) \(\in\) ƯC(12; 14; 60)
Mà \(x\) lại là số tự nhiên lớn nhất nên \(x\in\) ƯCLN(12; 14; 60)
12 = 22.3; 14 = 2.7; 60 = 22.3.5
ƯCLN(12; 14; 60) = 2
Vậy \(x=2\)
Tìm số tự nhiên lớn nhất.Biết 13,15,61 chia cho nó đều dư 1
13 chia x dư 1 suy ra 12 chia hết cho x
15 chia x dư 1 suy ra 14 chia hết cho x
61 chia x dư 1 suy ra 60 chia hết cho x
x thuộc ƯCLN(12,14,60) suy ra x=2
chúc bạn hok tốt :>
Bài giải
Gọi số tự nhiên cần tìm là;a,(a\(\in\)N,a>1)
Ta có:\(\hept{\begin{cases}13:a\\15:a\\60:a\end{cases}}Dư1\)\(\Rightarrow\)\(\hept{\begin{cases}13-1⋮a\\15-1⋮a\\61-1⋮a\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}12⋮a\\14⋮a\\60⋮a\end{cases}}\)
\(\Rightarrow a\inƯC\left(12,14,60\right)\)mà a lớn nhất
\(\Rightarrow a\inƯCLN\left(12,14,60\right)\)
\(12=2^2.3\) \(14=2.7\) \(60=2^2.3.5\)
\(\RightarrowƯCLN\left(12,14,60\right)=2\)
\(\Rightarrow a=2\)
Vậy số tự nhiên cần tìm là:2
1/. tìm số tự nhiên a lớn nhất sao cho : 13 ; 15 ; 61 chia a đều dư 1 .
2/. tìm số tự nhiên a lớn nhất sao cho : 44 ; 86 ; 65 chia cho a đều dư 2 .
1/
12 , 14 , 60 chia hết cho a
mà số lớn nhất thỏa mãn yêu cầu là 2
vì chia hết cho 12 chỉ có : 1 , 2 , 3 , 4 , 6 , 12
14 là : 1 , 2 , 7 , 14
vậy a lớn nhất là 2
2/
42 , 84 , 63 chia hết cho a
a = 3
vì chia hết cho 63 có : 1 , 3 , 9 , ...
42 : 1 , 3 , 6 , 7 , 2 , ....
vì vậy a lớn nhất = 3
3)1;4;9;16;25;36;...
4)1;2;3;4;7;11;18;...
5)1;2;5;9;16;27;...
6)0;3;8;15;24;35;...
7)2;5;10;17;26;...
8)1;3;6;10;15;21;28;...
a)tìm số tự nhiên a lớn nhất sao cho 13;15;61 chia cho a đều dư 1
b)tìm số tự nhiên a lớn nhất biết 149 chia cho a dư 29; 235 chia cho a dư 35
c)tìm số tự nhiên a biết khi chia 268 cho a dư 18; 390 chia cho a dư 40
a) Vì 13, 15,61 chia cho a đều dư 1 => 13;15;61 \(⋮a-1\)
=> a-1 thuộc ƯC(13;15;61)
Mà a lớn nhất => a-1 thuộc ƯCLN(13,15,61)
Mà 13;15;61 là các số nguyên tố cùng nhau => ƯCLN(13;15;61) = 1
=> a-1=1
=>a=2
Vậy a=2.
b) Ta có: 149 : a dư 29 => (149-29) thì chia hết cho a ( a > 29)
235 : a dư 35 => ( 235 - 35) chia hết cho a ( a> 35)
=> a thuộc ƯCLN(120,200) = 40
=> a = 40
Vậy a = 40
c) câu c tương tự câu b
a) Tìm số tự nhiên x lớn nhất sao cho: 13; 17; 21 chia x đều có số dư là 1;
b) Tìm số tự nhiên x sao cho: 28 chia x dư 3 và 39 chia x dư 4.
Tìm số tự nhiên a lớn nhất sao cho 13;15;61 chia a đều dư 1
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
tìm số tự nhiên a lớn nhất sao cho 13;15;61 đều chia a dư 1
13;15;61 đều chia a dư 1 => 12;14;60 đều chia hết cho a
12 = 22 . 3
14 = 2 . 7
60 = 22 . 3 . 5
ƯCLN ( 12, 14, 60 ) = 2
Vậy a = 2
1/tìm số tự nhiên nhỏ nhất có 3 chữ số biết rằng số đó chia cho 4,6,8 đều dư 32/tìm số tự nhiên nhỏ nhất sao cho khi chia 11 dư 6,chia cho 4 dư 1,chia cho 19 dư 113/tìm số tự nhiên nhỏ nhất sao cho a chia 5 dư 3,a chia 7 dư 44/tìm số tự nhiên nhỏ nhất bt đc chia cho 3 cho 4 cho 5 cho 6 đều dư 2 còn chia cho 7 thì dư 3.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Tìm kiếm bài học, bài tập, mã lớp, mã khóa học...
hehe
Tìm số tự nhiên lớn nhất sao cho 13;15;61 chia a đều dư 1
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301