\(P=\frac{a}{\sqrt{a}-1}-\frac{2a-2\sqrt{a}}{a-\sqrt{a}}\)
\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{a^2-2a+1}}{\sqrt{1-a^2}-\sqrt{a^2-2a+1}}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)ĐK:0< a< 1\)Dk 0
Rút gọn:
A= \(1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
Rút gọn biểu thức:
A= \(1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
\(A=1+"\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}"\times\frac{a-\sqrt{a}}{2\sqrt{a}-1}=\)
\(A="\frac{1a+\sqrt{a}-1}{1-a}-\frac{1a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}"\times\frac{a-\sqrt{a}}{1\sqrt{a}-1}\)
P/s: Ko chắc đâu nhé
Rút gọn biểu thức:
a) \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab+\sqrt{a}}}{\sqrt{ab}-1}+1\right)\)
b) \(1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{2\sqrt{a}-1}\right)\)
Cho A = \(1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\left(\frac{a-\sqrt{a}}{2\sqrt{a}-1}\right)\) Rút gọn A
ĐKXĐ:...
\(A=1+\left(\frac{1}{1-a}-\frac{\sqrt{a}}{1-a\sqrt{a}}\right).\left(2a+\sqrt{a}-1\right)\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\right)\)
\(=1+\left(\frac{\sqrt{a}-1}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right)\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right).\frac{\sqrt{a}}{2\sqrt{a}-1}\)
\(=1+\left(\frac{-1}{\sqrt{a}+1}+\frac{\sqrt{a}}{a+\sqrt{a}+1}\right).\sqrt{a}\left(\sqrt{a}+1\right)\)
\(=1+\left(-1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a+\sqrt{a}+1}\right).\sqrt{a}\)
\(=1+\left(\frac{-a-\sqrt{a}-1+a+\sqrt{a}}{a+\sqrt{a}+1}\right).\sqrt{a}\)
\(=1-\frac{\sqrt{a}}{a+\sqrt{a}+1}=\frac{a+\sqrt{a}+1-\sqrt{a}}{a+\sqrt{a}+1}=\frac{a+1}{a+\sqrt{a}+1}\)
Rút gọn \(1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{2\sqrt{a}-1}\right)\)
Rút gọn:\(1-\left(\frac{2a\sqrt{a}+a-\sqrt{a}}{a\sqrt{a}-1}-\frac{2\sqrt{a}-1}{\sqrt{a}-1}\right)\frac{\sqrt{a-a}}{2\sqrt{a}-1}\)
Cho A=\(1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\times\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
a> Rút gọc A
b> tìm a để a=\(\frac{6}{1+\sqrt{6}}\)
ok b ơi b làm nhanh hộ mình với mình đang cần gấp
B=1+\(\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
a)Rút gon B
b)Tìm a để B=\(\frac{\sqrt{6}}{1+\sqrt{6}}\)
c)CMR B>\(\frac{2}{3}\)
Cho biểu thức \(A=1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
a, Rút gọn A
b, Tìm a để \(A=\frac{\sqrt{6}}{1+\sqrt{6}}\)
c,Chứng minh \(A>\frac{2}{3}\)