cho 3 số a,b,c thỏa mãn:0≤a≤b+1≤c+2 và a+b+c=1.tìm GTNN của c.
Cho a,b,c là 3 số thực thỏa mãn điều kiện a/b=c/a và a+b+c=abc tìm GTNN của a và nói rõ b,c bằng bao nhiêu thì a đạt GTNN
Cho a,b,c không đồng thời bằng 0 thỏa mãn \(a^2+b^2+c^2=2\) và ab+bc+ca=1. Tìm GTLN,GTNN của a,b,c
Cho a,b,c không đồng thời bằng 0 thỏa mãn \(a^2+b^2+c^2=2\) và ab+bc+ca=1. Tìm GTLN,GTNN của a,b,c
bài 1:tìm số tự nhiên x;y thỏa mãn: 5x-2y=1
bài 2: cho a;b;c thỏa mãn 0<=a<=4;0<=b<=4;0<=c<=4 và a+b+c=6
tính GTLN của: P=a2+b2+c2+ab+ac+bc
Bài 1: Cho a+b+c= 2007 và 1/a+b + 1/b+c + 1/c+a=1/90
tính S = a/b+c +b/c+a + c/a+b
Bài 2: Tìm 3 phân số tối giản. Biết tổng của chúng bằng 15và 83/130 , tử số của chúng tỉ lệ thuận với 5;7;11 , mẫu số của chúng tỉ lệ nghịch với 1/4;1/5;1/6
Bài 3: Tìm các số nguyên x và y thỏa mãn đẳng thức: 2x2 + 3y2= 77
lm ơn giúp mk với
B
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )
Cho a, b, c là các số dương thỏa mãn: ab + bc+ ca = 3
Tìm GTNN của: \(M=\frac{19a+3}{1+b^2}+\frac{19b+3}{1+c^2}+\frac{19c+3}{1+a^2}\)
Ta có:
\(M=\frac{19a+3}{1+b^2}+\frac{19b+3}{c^2+1}+\frac{19c+3}{a^2+1}\)
\(=19a-\frac{19ab^2-3}{b^2+1}+19b-\frac{19bc^2-3}{c^2+1}+\frac{19ca^2-3}{a^2+1}\)
\(\ge19\left(a+b+c\right)-\frac{19ab^2-3}{2b}-\frac{19bc^2-3}{2c}-\frac{19ca^2-3}{2a}\)
\(=19\left(a+b+c\right)-19\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge19.3-\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Lại có:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge3\frac{\left(1+1+1\right)^2}{ab+bc+ca}=\frac{3.9}{3}=9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
\(\Rightarrow M\ge\frac{19.3}{2}+\frac{3}{2}.3=33\)
\(\)
cho 3 số a, b, c thỏa mãn: \(0\le a\le b+1\le c+2\) và a + b + c = 1. Tìm giá trị nhỏ nhất của c
Từ \(a\le b+1\le c+2\Rightarrow a+b+1+c+2\le3\left(c+2\right)\)\(\Rightarrow a+b+c+3\le3c+6\)
Mà a+b+c=1
\(\Rightarrow4\le3c+6\)
\(\Rightarrow-2\le3c\)
\(\Rightarrow c\ge-\frac{2}{3}\)
Dấu ''='' xảy ra khi \(c=\frac{-2}{3}\)
Vậy c nhỏ nhất khi \(c=\frac{-2}{3}\)
cho các số thực dương a,b,c thỏa mãn: \(a^2+b^2+c^2=12\)
Tìm GTNN của: P=\(a^3+b^3+c^3\)
ta có \(a^3+a^3+1\ge3a^2.\)mấy cái khác tt bạn cộng vế theo vế là ra GTNN
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)