1/a+1/b+1/c=2 và 1/a^2+1/b^2+1/c^2=2 .c/m a+b+c=abc
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a3 +1/b3 +1/c3 =
3/abc
Cập nhật: a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a^3 +1/b^3 +1/c^3 =
3/abc
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a2-bc)(1-ac)=a(1-bc)(b2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m \(\frac{1}{^{a^3}^{ }}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
cho \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=2 (1) ; \(\dfrac{1}{a^2}\)+\(\dfrac{1}{b^2}\)+\(\dfrac{1}{c^2}\)=2 (2)
c/m a+b+c= abc
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)
\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}=4\)
\(\Rightarrow2+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}=4\)
\(\Rightarrow\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}=2\)
\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)
\(\Rightarrow\dfrac{c+a+b}{abc}=1\)
\(\Rightarrow a+b+c=abc\)
Cho 1/a +1/b + 1/c=2
a+b+c=abc
c/m: 1/a^2 +1/b^2 +1/c^2 =2
Cho 1/a + 1/b + 1/c =2 và 1/a2 + 1/b2 + 1/c2 =2
C/m: a+b+c=abc
Help me!!!
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Rightarrow2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
\(\Rightarrow a+b+c=abc\)
Bài1:Cho a+b=1.Tính \(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2.\left(a+b\right)\)
Bài 2: Cho a,b,c thuộc R t/m: ab+bc+ca=abc và a+b+c=1.CMR:(a-1)(b-1)(c-1)=0
Bài 3: Cho x-y=12.Tính A=x^3-y^3-36xy
Bài 4: Rút gọn A=(ab+bc+ca)(1/a+1/b+1/c)-abc(1/a^2 + 1/b^2 +1/c^2)
Ta có A=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)\)
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)
=\(\left(a+b\right)^2-3ab+3ab-6a^2b^2+6a^2b^2=1\)
2) Ta có \(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1=0\)
bài 3 : Ta có \(A=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy=12\left(x^2+xy+y^2\right)-36xy=12\left(x^2-2xy+y^2\right)\)
\(=12\left(x-y\right)^2=12.12^2=1728\)
Từ 1/a + 1/b + 1/c = 2 bình phương hai vế ta có:
(1/a + 1/b + 1/c)² = 2²
=> 1/a² + 1/b² + 1/c² + 2(1/ab + 1/bc + 1/ ca) = 4
=> 1/a² + 1/b² + 1/c² + 2(a + b + c)/abc = 4 (Quy đồng MTC= abc)
=> 1/a² + 1/b² + 1/c² + 2abc/abc = 4 (Vì a + b + c = abc)
=> 1/a² + 1/b² + 1/c² + 2 = 4
=> 1/a² + 1/b² + 1/c² = 2
Vậy, P= 2
Cho a+b+c=abc và 1/a+1/b+1/c=2.CMR: 1/a^2 +1/b^2 +1/c^2 =2
ta có: a+b+c = abc
\(\Rightarrow\frac{a+b+c}{abc}=1\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
Lại có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(2^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.1\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Cho a+b+c=abc và 1/a+1/b+1/c=2.
CMR: 1/a^2 +1/b^2 +1/c^2 =2
.
Cho : 1/a + 1/b + 1/c = 1/ a^2 + 1/b^2 +
1/c^2 = 2
C/m : a+ b + c = abc
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{1}{a}.\frac{1}{b}+2.\frac{1}{b}.\frac{1}{c}+2.\frac{1}{a}.\frac{1}{c}=4\)
\(\Rightarrow2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
\(\Rightarrow\frac{a+b+c}{abc}=1\Rightarrow a+b+c=abc\)
Chúc bạn học tốt.
Cho : 1/a + 1/b + 1/c = 1/ a^2 + 1/b^2 +
1/c^2 = 2
C/m : a+ b + c = abc