Giải phương trình:
\(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Bạn xem lại đề câu b và c nhé !
a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)
\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ
\(\Rightarrow x\ge2\) thỏa mãn đề.
d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)
Pt tương đương :
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )
e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)
\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)
Phương trình (1) tương đương :
\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )
Giải các bất phương trình sau:
a) \(\sqrt{2-|x-2|}>x-2\)
b) \(x^2+3x+2\geq 2\sqrt{x^2+3x+5}\)
c) \(4\sqrt{x}+\frac{2}{\sqrt{x}}<2x+\frac{1}{2x}+2\)
giải phương trình
a) \(\left(x+\frac{5-x}{\sqrt{x}+1}\right)^2+\frac{16\sqrt{x}\left(5-x\right)}{\sqrt{x}+1}-16\)\(=0\)
b) \(\sqrt{2x-\frac{3}{x}}+\sqrt{\frac{6}{x}-2x}=1+\frac{3}{2x}\)
c) \(\sqrt{2x+1}+\frac{2x-1}{x+3}-\left(2x-1\right)\sqrt{x^2+4}-\sqrt{2}=0\)
d) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
giải phương trình vô tỉ sau
\(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{2x-1}}=\frac{4.\sqrt{10}}{5}\)
đề sai rùi đe dung như này vì mk đã làm rồi
\(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{2x+1}}\)\(+\frac{1}{\sqrt{1-2x}}=\frac{4\sqrt{10}}{5}\)
dk \(-\frac{1}{2}< x< \frac{1}{2}\)
ap dung bdt \(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)
\(\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{1-2x}}>=\frac{4}{\sqrt{2x+1}+\sqrt{1-2x}}\)
tiep tuc ap dung bdt \(a+b< =2\sqrt{a^2+b^2}\)
\(\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{1-2x}}>=\frac{4}{\sqrt{2x+1}+\sqrt{1-2x}}>=\frac{4}{\sqrt{2\left(2x+1+1-2x\right)}}=2\)
lai co \(\frac{-1}{2}< x< \frac{1}{2}\Rightarrow\frac{1}{\sqrt{x+1}}>\frac{1}{\sqrt{\frac{1}{2}+1}}=\frac{\sqrt{6}}{3}\)
suy ra \(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{1-2x}}>2+\frac{\sqrt{6}}{3}>\frac{4\sqrt{10}}{5}\)
pt vo no
Giải phương trình \(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
Giải phương trình :
a)\(\sqrt{x+\frac{3}{4}+\sqrt{x+\frac{1}{2}}}=x+\frac{5}{4}\)
b)\(\frac{2x}{2x^2-5x+3}+\frac{13}{2x^2+x+3}=6\)
giải phương trình
1) \(\sqrt{x-1}+\sqrt{2x-1}=5\)
2) \(\frac{1}{\sqrt{x}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+4}}+\frac{1}{\sqrt{x+4}+\sqrt{x+6}}=\frac{\sqrt{10}}{2}-1\)
1) đặt đk rùi bình phương 2 vế là ok
2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))
<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)
<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)
<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)
<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)
đến đây bình phương 2 vế rùi giải bình thường nhé
Giải phương trình 2\(\sqrt{x^2-x-\frac{1}{4}}-4\sqrt{1-2x}=5\)
đkxd:
\(\sqrt{\left(1-2x\right)^2-2}-4\sqrt{1-2x}=5..\)
ĐẶT \(\hept{\begin{cases}\sqrt{1-2x}=a\\\sqrt{\left(1-2x\right)^2-2}=b\end{cases}\left(a,b\ge0\right)\Rightarrow\hept{\begin{cases}1-2x=a^2\\\left(1-2x\right)^2=b^2+2\end{cases}}\Leftrightarrow a^4=b^2+2}\)(1)
LẠi có \(b-4a=5\Rightarrow b=5+4a\Leftrightarrow b^2=16a^2+40a+25\)(2)
Thay (2) vào (1) \(\Rightarrow a^4=16a^2+40a+27\)
Đến đây nghiệm xấu quá @. xem lại đề did bạn
Giải phương trình
\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
\(x-\frac{1}{x}+\sqrt{x-\frac{1}{x}}+\frac{1}{4}=2x-\frac{5}{x}+\sqrt{2x-\frac{5}{x}}+\frac{1}{4}\)
=>\(\left(\sqrt{x-\frac{1}{x}}+\frac{1}{2}\right)^2=\left(\sqrt{2x-\frac{5}{x}}+\frac{1}{2}\right)^2\)
dễ suy ra đc:\(\sqrt{x-\frac{1}{x}}=\sqrt{2x-\frac{5}{x}}\)
từ đây=>x=?
Giải phương trình
5\(\sqrt{x}+\frac{5}{2\sqrt{x}}\) = 2x +\(\frac{1}{2x}+4\)