5/140
Cho tam giác ABC có hai đường trung tuyến BD và CE cắt nhau tại G, AG cắt BC ở H.
Cm: tam giác AHB= tam giác AHC.
Gọi I và K lần lượt là trung điểm củaGA và GC. Chứng minh AK, BD, CI đồng qui.
Cho tam giác ABC cân ở A có hai đường trung tuyến BD và CE catqs nhau ở G. AG kéo dài AG cắt AC ở H
1, So sánh tam giác AHB và tam giác AHC
2, Gọi I và K lần luotwjlaf trung điểm của GA và GC. Chứng minh AK,BD,CI đồng qui
HELP ME, PLEASE !!!
. Cho tam giác ABC có hai đường trung tuyến BD và CF cắt nhau ở G. AG kéo dài cắt BC
tại H.
a) So sánh AHB và AHC.
b) Gọi I, K lần lượt là trung điểm của GA và GC. Chứng minh: AK, BD, CI đồng quy.
a: Xét ΔABC có
BD,CE là trung tuyến
BD cắt CE tại G
=>G là trọng tâm
=>AG là trung tuyến của ΔABC
=>Hlà trung điểm của CB
Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: Xét ΔGAC có
GD,CI,AK là trung tuyến
=>GD,CI,AK đồng quy
Bài 4. Cho tam giác ABC có hai đường trung tuyến BD và CF cắt nhau ở G. AG kéo dài cắt BC
tại H.
a) So sánh AHB và AHC.
b) Gọi I, K lần lượt là trung điểm của GA và GC. Chứng minh: AK, BD, CI đồng quy.
Sửa đề: ΔABC cân tại A
a: Xét ΔABC có
BD,CF là đường trung tuyến
BD cắt CF tại G
=>G là trọng tâm
=>H là trung điểm của BC
Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: Xét ΔGAC có
GD,CI,AK là trung tuyến
=>GD,CI,AK đồng quy
=>BD,CI,AK đồng quy
4.Cho tam giác ABC có 2 đường trung tuyến BD và CF cắt nhau ở G. AG kéo dài cắt BC tại H. Gọi I, K lần lượt là trung điểm của GA và GC. CM: Ak, BD, CI đồng quy
Cho tam giác ABC có các đường trung tuyến BD và CE cắt nhau tại G. Gọi I là trung điểm BD và K là trung điểm CE. Chứng minh EI, DK, AG đồng qui
Bài 1: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 2: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN.
Bài 1:
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra DE//IK và DE=IK
Tam giác ABC, các đường trung tuyến BD, CE cắt nhau tại G. Gọi I và K lần lượt là trung điểm của GB, GC. Chứng minnh rằng IK =ED và IK //ED
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra IK//ED và IK=ED
Cho tam giác ABC có 2 đường trung tuyến BD và CE cắt nhau tại G . Gọi I và K lần lượt là trung điểm của GB và GC cm rằng: A) DE//IK và DE=IK B) tam giác GED=tam giác GKI C) GE=1/3 CE
Cho tam giác ABC cân tại A , BD và CE là Hai trung tuyến cắt nhau tại G. Chứng minh : a, AG là giác của góc BAC b, tam giác BGC cân c, gọi K là trung điểm AG, I trung điểm của CG. chứng minh BD , CK , AI đồng quy. d, cho diện tích ABC = 300 cm2 . Tính diện tích BGC
a: Xet ΔABC có
BD,CE là trung tuyến
BD cắt CE tại G
=>G là trọng tâm
=>AG là trung tuyên của ΔABC
mà ΔABC cân tại A
nên AG là phân giác của góc BAC
b ΔACB cân tại A
mà AG là trung tuyến
nên AG là trung trực của BC
=>GB=GC
c: Xét ΔGAC có
CK,AI,GD là trung tuyến
=>CK,AI,GD đồng quy
=>CD,AI,BD đồng quy