\(A=2+2+2^2+2^3+2^4+...+2^{2017}+2^{2018}\)2018
Help me!!!
Cho A=1*2+2*3+3*4+4*5+...+2017*2018
B=2018^3/3
so sánh A và B
help me đang cần gấp mg ah
A=1*2+2*3+3*4+...+2017*2018
3A=1*2*3+2*3*(4-1)+...+2017*2018*(2019-2016)
3A=1*2*3+2*3*4-1*2*3+...+2017*2018*2019-2016*2017*2018
3A=2017*2018*2019
A=\(\frac{2017.2018.2019}{3}\)
mk chỉ biết tính a thôi
tính tổng các phân số sau:
a) 1/1*2+1/2*3+1/3*4+...+1/2017*2018
b)1/1*3+1/3*5+1/5*7+...+1/2017*2019
c)5/1*2+5/2*3+5/3*4+...+5/2018+2019
help me nhanh lên mình đang cần gấp tí nữa là mình đi hojc rồi
a) Các số có dạng : \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a}-\)\(\frac{1}{a+1}\)
Thế vào bởi các số sẽ có kết quả
b) Các số có dạng : \(\frac{1}{a\left(a+2\right)}=\frac{1}{2}.\frac{2}{a\left(a+2\right)}=\frac{1}{2}.\frac{\left(a+2\right)-a}{a\left(a+2\right)}\)\(=\frac{1}{2}.\left(\frac{1}{a}-\frac{1}{a+2}\right)\)
Làm tương tự trên
c) Lấy nhân tử chung là 5 rồi làm như câu a)
bạn có thể làm ra hộ mình được ko mình ko hiểu
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
Rút gọn
A=\(\sqrt{1^2+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1^2+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+......+\sqrt{1^2+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)
HELP ME,PLS
Lời giải:
Xét \(1+\frac{1}{n^2}+\frac{1}{(n+1)^2}=\frac{n^2+1}{n^2}+\frac{1}{(n+1)^2}\)
\(=\frac{(n+1)^2-2n}{n^2}+\frac{1}{(n+1)^2}=\left(\frac{n+1}{n}\right)^2+\frac{1}{(n+1)^2}-\frac{2}{n}\)
\(=\left(\frac{n+1}{n}-\frac{1}{n+1}\right)^2=\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2\)
\(\Rightarrow \sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=1+\frac{1}{n}-\frac{1}{n+1}\)
Áp dụng vào bài toán suy ra:
\(A=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2017}-\frac{1}{2018}\)
\(=2016+\frac{1}{2}-\frac{1}{2018}=2016,5-\frac{1}{2018}\)
a)A=/x+7/+/x^2-169/-/x-2018/
b)B=[2018/2+2018/3+2028/4+.....+2019/2018]:[1/2018+2/2017+3/2016+......+2018]
Cho tổng A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+\frac{2018}{2017^2+3}+...+\frac{2018}{2017^2+n}+...+\frac{2018}{2017^2+2017}\)
(A có 2017 số hạng). Chứng tỏ A không là số nguyên
A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)
>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)
\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\) (1)
Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)
\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)
\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\) (2)
Từ (1) và (2) suy ra:1 < A < 2
Vậy A không phải là số nguyên
45612223698++56456+89575637259415767549846574257
Tính nhanh
(2^2016+2^2017+2^2018):(2^2014+2^2015+2^2016)=?
Help me mk đqng cân gấp
(2^2016+2^2017+2^2018):(2^2014+2^2015+2^2016)=2^2016(1+2+2^2):2^2014:(1+2+2^2)=2^2016:2^2014=2^2=4
\(\frac{2^{2016}+2^{2017}+2^{2018}}{2^{2014}+2^{2015}+2^{2016}}=\frac{2^{2016}\left(1+2+2^2\right)}{2^{2014}\left(1+2+2^2\right)}=\frac{2^{2016}}{2^{2014}}=2^2=4\)
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]