Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thấu Minh Phong

Rút gọn

A=\(\sqrt{1^2+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1^2+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+......+\sqrt{1^2+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)

HELP ME,PLS

Akai Haruma
12 tháng 9 2018 lúc 11:10

Lời giải:

Xét \(1+\frac{1}{n^2}+\frac{1}{(n+1)^2}=\frac{n^2+1}{n^2}+\frac{1}{(n+1)^2}\)

\(=\frac{(n+1)^2-2n}{n^2}+\frac{1}{(n+1)^2}=\left(\frac{n+1}{n}\right)^2+\frac{1}{(n+1)^2}-\frac{2}{n}\)

\(=\left(\frac{n+1}{n}-\frac{1}{n+1}\right)^2=\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2\)

\(\Rightarrow \sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng vào bài toán suy ra:

\(A=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2017}-\frac{1}{2018}\)

\(=2016+\frac{1}{2}-\frac{1}{2018}=2016,5-\frac{1}{2018}\)


Các câu hỏi tương tự
PTTD
Xem chi tiết
Akai Shuchi
Xem chi tiết
Quynh Existn
Xem chi tiết
Quynh Existn
Xem chi tiết
đặng thị phương thảo
Xem chi tiết
Nguyễn Thị Minh Thư
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Anh Quynh
Xem chi tiết
Ly Ly
Xem chi tiết