Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Hương Giang

Rút gọn biểu thức sau:
1) \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)

2) \(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{1}{1+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}\)

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 20:10

1) Ta có: \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)

\(=\dfrac{1}{2}\cdot4\sqrt{3}-2\cdot5\sqrt{3}-\sqrt{3}+5\cdot\sqrt{\dfrac{4}{3}}\)

\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{10}{\sqrt{3}}\)

\(=\dfrac{-27+10}{\sqrt{3}}\)

\(=\dfrac{-17\sqrt{3}}{3}\)

b) Ta có: \(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{1}{\sqrt{2}+1}+\dfrac{\sqrt{2}+1}{\sqrt{2}}\)

\(=\dfrac{\sqrt{2}-1-\sqrt{2}+3+2\sqrt{2}}{\sqrt{2}\left(\sqrt{2}+1\right)}\)

\(=\dfrac{2+2\sqrt{2}}{2+2\sqrt{2}}=1\)


Các câu hỏi tương tự
Tiến Đỗ
Xem chi tiết
PTTD
Xem chi tiết
Ly Ly
Xem chi tiết
Kashima Tokiro
Xem chi tiết
Quynh Existn
Xem chi tiết
Quynh Existn
Xem chi tiết
Ly Ly
Xem chi tiết
Ly Ly
Xem chi tiết
Ly Ly
Xem chi tiết