Cho x,y\(\in R\) sao cho \(2x^2+y^2=\frac{13}{2}\)
Tìm GTLN của I=\(3x+\sqrt{2}y\)
Tìm GTNN của \(\sqrt{x^2-x+\frac{13}{2}}+\sqrt{x^2-3x+\frac{5}{2}}\)
Tìm GTLN của B=7x-y khi x^2+y^2=2
Cho \(C=\frac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\frac{2-\sqrt{x}}{\sqrt{x}-1}-\frac{1+2\sqrt{x}}{\sqrt{x}+2}\)
a> Tìm x để C= 1/2
B> Tìm x thuộc Z sao cho C nhận giá trị nguyên
C> Tìm GTLN của C
Cho \(x;y\in R\), thỏa mãn \(x^2+y^2=1\). Tìm GTLN của: \(\frac{x}{y+\sqrt{2}}\)
$P^2=\frac{x^2}{y^2+2\sqrt{2}+2}=\frac{1-y^2}{y^2+2\sqrt{2}y+2}$
<=>$P^2.y^2+2\sqrt{2}P^2y+2P^2=1-y^2$
<=>$(P^2+1).y^2+2\sqrt{2}P^2y+2P^2-1=0$
để tồn tại y thì $\Delta\geq0<=>-2P^4+P^2+1\geq0<=>(P^2-1).(2P^2+1)\leq 0$
<=>$P^2-1\leq 0<=>-1\leq P \leq 1$
suy ra GTLN của P là 1, thay P vào pt trên ta tìm được $y=\frac{-1}{\sqrt{2}}$
suy ra $y+\sqrt{2} >0$ nên để P đạt max thì x phải dương ( do mẫu dương để P max thì tử phải dương)
mà $x^2=1-y^2=\frac{1}{2}$ suy ra $x=\frac{1}{\sqrt{2}}$
1. Tìm GTNN của A= \(\frac{x^2-2x+2018}{x^2}\)
2. Tìm GTLN của B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
3. Tìm GTLN của M= \(\frac{3x^2+14}{x^2+4}\)
4. Cho x+y=2. Tìm GTNN của A= \(x^3+y^3+2xy\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
ê viết lộn dòng này :v
\(MinA=\frac{2017}{2018}\)nha
Cho x, y \(\in\) R, thảo mãn x2 + y2 = 1. Tìm GTLN của biểu thức P = \(\frac{x}{y+\sqrt{2}}\).
\(P=\frac{x}{y+\sqrt{2}}\Rightarrow P.y+P\sqrt{2}=x\Rightarrow x-P.y=P\sqrt{2}\)
\(\Rightarrow2P^2=\left(x-P.y\right)^2\le\left(1+P^2\right)\left(x^2+y^2\right)=1+P^2\)
\(\Rightarrow P^2\le1\Rightarrow P_{max}=1\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{\sqrt{2}}{2}\\y=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
cho x, y thuộc R thỏa mãn x2 + y2 = 1 . Tìm GTLN của biểu thức \(P=\frac{x}{y+\sqrt{2}}\)
x + y = 1
tim min
1/(x^2 + y^2) + 2/(xy) -4xy
cho x,y thuộc R thoa mản x2+y2=1
tìm GTLN P=\(\frac{x}{y+\sqrt{2}}\)
P= \(\frac{x}{y+\sqrt{2}}\)= \(x\frac{\sqrt{2}-y}{2-y^2}\) do \(x^2\) +\(y^2\)=1 =>y^2<hoặc bằng 1 => -1<=y<=1 =>\(\sqrt{2}-y>=0\)
P<,= \(\frac{\sqrt{2}x}{2-1+x^2}\)=\(\frac{\sqrt{2}x}{x^2+1}\)\(-\)\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{2}}\)= \(\frac{-x^2+2x-1}{x^2+1}+\frac{1}{\sqrt{2}}\)và bé hơn \(\frac{1}{\sqrt{2}}\)do \(\frac{-x^2+2x-1}{x^2+1}\)bé hơn 0 vậy GTLN của P là \(\frac{1}{\sqrt{2}}\)
đạt được tai x=1 và y=0
1)Cho x+y+z=1
Tìm GTLN của \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
2) Cho \(x+y+z\le\frac{3}{2}\)
Tìm GTNN của \(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\)
b, Gọi biểu thức đề ra là B
=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)
=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\)
( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )
=> Min B=6
Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)
\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)
\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)
=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)
Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1
=> \(x=y=z=\frac{1}{3}\)
Vậy ...
Mình nhầm chỗ câu b, sửa lại là :
\(B\ge3\sqrt[3]{\sqrt{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}}\)
Bạn làm tương tự => \(B\ge3\sqrt{2}\).
cho x,y thỏa mãn: \(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\) tìm GTLN, GTNN của P=\(\left(x+y\right)^2-\sqrt{9-x-y}+\frac{1}{\sqrt{x+y}}\)
Đk: \(x\ge2;y\ge-1;0< x+y\le9\)
Ta có: \(\sqrt{2x-4}+\frac{1}{\sqrt{2}}\sqrt{2(y+1)}\leq\sqrt{3(x+y-1)}\)
Từ giả thiết suy ra
\(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\Rightarrow x+y-1\leq\sqrt{3(x+y-1)}\)
Vậy \(1\leq(x+y)\leq4\). Đặt \(\left\{\begin{matrix}t=x+y\\t\in\left[1;4\right]\end{matrix}\right.\) ta có:
\(P=t^2-\sqrt{9-t}+\frac{1}{\sqrt{t}}\)
\(P'\left(t\right)=2t+\frac{1}{2\sqrt{9-t}}-\frac{1}{2t\sqrt{t}}>0\forall t\in\left[1;4\right]\)
Vậy \(P\left(t\right)\) đồng biến trên \([1;4]\)
Suy ra \(P_{max}=P\left(4\right)=4^2-\sqrt{9-4}+\frac{1}{\sqrt{4}}=\frac{33-2\sqrt{5}}{2}\) khi \(\left\{\begin{matrix}x=4\\y=0\end{matrix}\right.\)
\(P_{min}=P\left(1\right)=2-2\sqrt{2}\) khi \(\left\{\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Bài 1:Tìm tập xác định của hàm số sau:
a) y=\(\frac{1-2x}{2x^2-5x+2}\)
b) y=\(\frac{x}{x-1}+\sqrt{2x+4}\)
c)y= \(\frac{\sqrt{x-2}}{x^2+2x+1}\)
d)y= \(\frac{3x+1}{x^2-x+1}\)
e) y=\(\frac{x+3}{2x^2-18}+\frac{5}{1+x^2}-2x+1\)
f) y=\(\frac{x^3-3}{\sqrt{x-2}-\sqrt{7-3x}}\)
Bài 2: Tìm m để hàm số y=\(\frac{3x+5}{x^2+3x+m-1}\)có tập xác định là D=R
a) y xác định \(\Leftrightarrow2x^2-5x+2\ne0\Leftrightarrow\left(x-2\right)\left(2x-1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{1}{2}\end{matrix}\right.\). Vậy tập xác định D = R / { 2; 1/2}
b) y xác định \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\2x+4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge-2\end{matrix}\right.\).
Vậy tập xác định D = \([-2;+\infty)/1\)
y xác định \(\Leftrightarrow x^2-3x+m-1\ne0\forall x\in R\)
suy ra phương trình x2 - 3x + m - 1 = 0 vô nghiệm
\(\Rightarrow\Delta=9-4\left(m-1\right)< 0\Leftrightarrow9-4m+4< 0\Leftrightarrow m>\frac{13}{4}\)
\(\Rightarrow m\in\left(\frac{13}{4};+\infty\right)\)