cho tam giác ABC vuông tại A có AH là đường cao chia cạnh huyền BC thành hai đoạn BH=4cm; HC = 6cm
b) gọi M là chung điểm của AC. Tính số đo góc AMB( làm tròn đến độ)
c)kẻ AK vuông góc với BM (K thuộc BM) . Chứng minh BK.BM=BH.BC
Cho tam giác vuông ABC vuông tại A, chân đường cao AH của tam giác ABC chia cạnh huyền BC thành hai đoạn thẳng BH = 4cm, HC = 9cm. Tính diện tích tam giác ABC?
A. S A B C = 39 c m 2
B. S A B C = 36 c m 2
C. S A B C = 78 c m 2
D. S A B C = 19 c m 2
Áp dụng hệ thức lượng trong tam giác ABC vuông tại A
Ta có:
Vậy S A B C = 1 2 A B . A C = 1 2 . 2 13 . 3 13 = 39 c m 2
Chọn đáp án A.
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6 cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6 a) tính độ dài AH, AB, AC b) Gọi M là trung điểm của AC. Tính số đo góc AMB ( làm tròn đến độ)
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6
cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6
a) tính độ dài AH, AB, AC
b) Gọi M là trung điểm của AC. Tính số đo góc AMB ( làm tròn đến độ)
c) Kẻ AK vuông góc BM (K thuộc BM). Chứng mih : BK.BM=BH.BC
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Tính độ dài đoạn thẳng DE
Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật
Suy ra: AH = DE (tính chất hình chữ nhật)
Tam giác ABC vuông tại A và có AH là đường cao
Theo hệ thức giữa đường cao và hình chiếu ta có:
A H 2 = HB.HC = 4.9 = 36 ⇒ AH = 6 (cm)
Vậy DE = 6 (cm)
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Tính diện tích tứ giác DENM
Tam giác BDH vuông tại D có DM là đường trung tuyến nên:
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền thành hai đoạn thẳng có độ dài 4cm và 9cm. Diện tích tam giác vuông đó là:
A. 39 c m 2
B. 36 c m 2
C. 18 c m 2
D. 27 c m 2
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành hai đoạn ; BH=4cm và HC=6cm
a) Tính độ dài các đoạn AH,AB,AC
b) Gọi M là trung điểm của AC . Tính số đo góc AMB ( làm tròn đến độ )
c) Kẻ AK vuông góc với BM ( K thuộc BM ) . Chứng minh BK.BM=BH.BC
Cho tam giác ABC vuông tại A có AH là đường cao chia cạnh huyền BC thành hai đoạn BH=4cm; HC = 6cm
b) gọi M là chung điểm của AC. Tính số đo góc AMB( làm tròn đến độ)
c)kẻ AK vuông góc với BM (K thuộc BM) . Chứng minh BK.BM=BH.BC
c: Xét ΔABM vuông tại A có AK là đường cao
nên \(BK\cdot BM=AB^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)
1) Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành hai đoạn: BH=4cm và HC=6cm
a) Tính độ dài các đoạn AH,AB,AC
b) Gọi M là trung điểm của AC. Tính số đo góc AMB( làm tròn đến độ )
c) Kẻ AK vuông góc với BM (K thuộc BM) . Chứng minh : BK.BM=BH.BC
Vẽ hình luôn ah
a: BC=BH+CH
=4+6
=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{4\cdot6}=2\sqrt{6}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{4\cdot10}=2\sqrt{10}\left(cm\right)\\AC=\sqrt{6\cdot10}=2\sqrt{15}\left(cm\right)\end{matrix}\right.\)
b: M là trung điểm của AC
=>\(AM=\dfrac{AC}{2}=\sqrt{15}\left(cm\right)\)
Xét ΔAMB vuông tại A có
\(tanAMB=\dfrac{AB}{AM}=\sqrt{\dfrac{2}{3}}\)
=>\(\widehat{AMB}\simeq39^0\)
c: ΔABM vuông tại A có AK là đường cao
nên \(BK\cdot BM=BA^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)