Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 2 2021 lúc 9:37

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a) Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2x-\sqrt{x}+2\sqrt{x}+2\)

\(=2-x\)

b) Để P=3 thì 2-x=3

hay x=-1(Không thỏa mãn ĐKXĐ)

Vậy: Không có giá trị nào của x để P=3

c) Thay \(x=7+2\sqrt{3}\) vào P, ta được:

\(P=2-7-2\sqrt{3}=-5-2\sqrt{3}\)

Vậy: Khi \(x=7+2\sqrt{3}\) thì \(P=-5-2\sqrt{3}\)

Trần Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 2 2021 lúc 9:32

a) Ta có: \(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)

\(=\left(\dfrac{x+1}{x+1}+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{x+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{x+\sqrt{x}+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(\sqrt{x}-1\right)}{x-2\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}+1}{1}\cdot\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\)

b) Để \(P=5\) thì \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}=5\)

\(\Leftrightarrow x+\sqrt{x}+1=5\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow x+\sqrt{x}+1=5\sqrt{x}-5\)

\(\Leftrightarrow x+\sqrt{x}+1-5\sqrt{x}+5=0\)

\(\Leftrightarrow x-4\sqrt{x}+6=0\)

\(\Leftrightarrow x-2\cdot\sqrt{x}\cdot2+4+2=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+2=0\)(Vô lý)

Vậy: Không có giá trị nào của x để P=5

Trần Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 2 2021 lúc 9:42

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a) Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2\)

\(=\dfrac{x-2\sqrt{x}+1-\left(x+2\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{4x}\)

\(=\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\cdot\dfrac{\left(x-1\right)^2}{4x}\)

\(=\dfrac{-4\sqrt{x}\cdot\left(x-1\right)}{4x}\)

\(=\dfrac{-x+1}{\sqrt{x}}\)

b) Để P=2 thì \(-x+1=2\sqrt{x}\)

\(\Leftrightarrow-x+1-2\sqrt{x}=0\)

\(\Leftrightarrow x+2\sqrt{x}-1=0\)

\(\Leftrightarrow x+2\sqrt{x}+1-2=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=\sqrt{2}\\\sqrt{x}+1=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{2}-1\\\sqrt{x}=-\sqrt{2}-1\left(loại\right)\end{matrix}\right.\Leftrightarrow x=3-2\sqrt{2}\)

Vậy: Để P=2 thì \(x=3-2\sqrt{2}\)

Linh Linh
Xem chi tiết
Akai Haruma
29 tháng 3 2021 lúc 23:47

Lời giải:
ĐK: $x\geq 0; x\neq 4; x\neq 9$

\(P=\frac{1}{\sqrt{x}+1}:\left[\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-2)(\sqrt{x}-3)}-\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}\right]\)

\(=\frac{1}{\sqrt{x}+1}:\frac{x-9-(x-4)+\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{(\sqrt{x}-2)(\sqrt{x}-3)}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

Để $P>0\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+1}>0$

$\Leftrightarrow \sqrt{x}-2>0$ (do $\sqrt{x}+1>0$)

$\Leftrightarrow x>4$

Kết hợp với ĐKXĐ suy ra $x>4; x\neq 9$

Pikachuuuu
12 tháng 5 2021 lúc 8:10

a, \(P=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(P=\left(\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(P=\dfrac{1}{\sqrt{x}+1}:\left[\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right]\)

\(P=\dfrac{1}{\sqrt{x}+1}:\left[\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(P=\dfrac{1}{\sqrt{x}+1}:\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(P=\dfrac{1}{\sqrt{x}+1}.\sqrt{x}-2=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

Hàn Băng Băng
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 15:22

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.

Dĩ dãng dơ dáy dễ gì giấ...
Xem chi tiết
việt lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 1 2022 lúc 23:09

Bài 1: 

a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)

b: Để A=3 thì 3x-9=x+1

=>2x=10

hay x=5

Bài 2: 

a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)

\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)

b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{3;1;5;-1\right\}\)

Trần Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 2 2021 lúc 9:48

ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

a) Ta có: \(P=\dfrac{\sqrt{a}-1}{3\sqrt{a}+\left(\sqrt{a}-1\right)^2}-\dfrac{6-2\left(\sqrt{a}-1\right)^2}{a\sqrt{a}-1}+\dfrac{2}{\sqrt{a}-1}\)

\(=\dfrac{\sqrt{a}-1}{a+\sqrt{a}+1}-\dfrac{-2a+4\sqrt{a}+4}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}+\dfrac{2}{\sqrt{a}-1}\)

\(=\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\dfrac{-2a+4\sqrt{a}+4}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}+\dfrac{2\left(a+\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{a-2\sqrt{a}+1+2a-4\sqrt{a}-4+2a+2\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{5a-4\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{5a-5\sqrt{a}+\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{5\sqrt{a}\left(\sqrt{a}-1\right)+\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(5\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{5\sqrt{a}+1}{a+\sqrt{a}+1}\)

b) Để P=1 thì \(5\sqrt{a}+1=a+\sqrt{a}+1\)

\(\Leftrightarrow a+\sqrt{a}+1-5\sqrt{a}-1=0\)

\(\Leftrightarrow a-4\sqrt{a}=0\)

\(\Leftrightarrow\sqrt{a}\left(\sqrt{a}-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=0\\\sqrt{a}-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\left(nhận\right)\\a=16\left(nhận\right)\end{matrix}\right.\)

Vậy: Để P=1 thì \(a\in\left\{0;16\right\}\)

to tien cuong
Xem chi tiết
nguyen van bi
7 tháng 12 2020 lúc 19:21

bạn viết thế này khó nhìn quá

Khách vãng lai đã xóa
Lê Đức Thành
26 tháng 11 2021 lúc 20:17

nhìn hơi đau mắt nhá bạn hoa mắt quá

Khách vãng lai đã xóa