Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 5 2018 lúc 12:25

Đáp án D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 8 2017 lúc 4:00

Parabol y = ax2 + bx + 2 có đỉnh I(2 ; –2), suy ra :

Giải bài 3 trang 49 sgk Đại số 10 | Để học tốt Toán 10

Từ (1) ⇒ b2 = 16.a2, thay vào (2) ta được 16a2 = 16a ⇒ a = 1 ⇒ b = –4.

Vậy parabol cần tìm là y = x2 – 4x + 2.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 6 2019 lúc 11:56

(P) : y = ax2 + bx + c

Parabol có đỉnh I(1 ; 4) ⇒ –b/2a = 1 ⇒ b = –2a ⇒ 2a + b = 0.

Parabol đi qua I(1; 4) ⇒ 4 = a.12 + b . 1 + c ⇒ a + b + c = 4.

Paraol đi qua D(3; 0) ⇒ 0 = a.32 + b.3 + c ⇒ 9a + 3b + c = 0.

Giải hệ phương trình Giải bài 12 trang 51 sgk Đại số 10 | Để học tốt Toán 10 

ta được : a = –1 ; b = 2 ; c = 3.

Vậy a = –1 ; b = 2 ; c = 3.

Kiet
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 12 2023 lúc 22:13

Sửa đề: cắt trục tung tại điểm có tung độ bằng -3

Thay x=0 và y=-3 vào (P), ta được:

\(a\cdot0^2+b\cdot0+c=-3\)

=>0+0+c=-3

=>c=-3

vậy: (P): \(y=ax^2+bx-3\)

Tọa độ đỉnh là I(-1;-4) nên ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=-1\\-\dfrac{b^2-4\cdot a\cdot\left(-3\right)}{4a}=-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\\dfrac{b^2+12a}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\\left(2a\right)^2+12a=16a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\4a^2-4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\4a\left(a-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\\left[{}\begin{matrix}a=0\left(loại\right)\\a-1=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 8 2019 lúc 16:35

+ Parabol y = ax2 + bx + c đi qua điểm A (8; 0)

⇒ 0 = a.82 + b.8 + c ⇒ 64a + 8b + c = 0 (1).

+ Parabol y = ax2 + bx + c có đỉnh là I (6 ; –12) suy ra:

–b/2a = 6 ⇒ b = –12a (2).

–Δ/4a = –12 ⇒ Δ = 48a ⇒ b2 – 4ac = 48a (3) .

Thay (2) vào (1) ta có: 64a – 96a + c = 0 ⇒ c = 32a.

Thay b = –12a và c = 32a vào (3) ta được:

(–12a)2 – 4a.32a = 48a

⇒ 144a2 – 128a2 = 48a

⇒ 16a2 = 48a

⇒ a = 3 (vì a ≠ 0).

Từ a = 3 ⇒ b = –36 và c = 96.

Vậy a = 3; b = –36 và c = 96.

29 Thùy trang 10a4
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 5 2018 lúc 6:13

+ Parabol y = ax2 + bx + 2 đi qua điểm B(–1 ; 6)

⇒ 6 = a.( –1)2 + b.( –1) + 2 ⇒ a = b + 4 (1)

+ Parabol y = ax2 + bx + 2 có tung độ của đỉnh là –1/4

Giải bài 3 trang 49 sgk Đại số 10 | Để học tốt Toán 10

Thay (1) vào (2) ta được: b2 = 9.(b + 4) ⇔ b2 – 9b – 36 = 0.

Phương trình có hai nghiệm b = 12 hoặc b = –3.

Với b = 12 thì a = 16.

Với b = –3 thì a = 1.

Vậy có hai parabol thỏa mãn là y = 16x2 + 12b + 2 và y = x2 – 3x + 2.

hoàng văn anh
Xem chi tiết
Akai Haruma
28 tháng 10 2021 lúc 9:38

Lời giải:
$(P)$ cắt trục tung tại điểm có tung độ $-1$ tức $(P)$ đi qua $(0; -1)$

$\Rightarrow -1=a.0^2-2.0+c$

$\Rightarrow c=-1$

Để $P$ có min $=\frac{-4}{3}$ thì:
\(\left\{\begin{matrix} a>0\\ \frac{4ac-b^2}{4a}=\frac{-4a-(-2)^2}{4a}=\frac{-4a-4}{4a}=\frac{-(a+1)}{a}=\frac{-4}{3}\end{matrix}\right.\)  

\(\Leftrightarrow a=3\)

Vậy parabol là $y=3x^2-2x-1$

 

 

Akai Haruma
30 tháng 10 2021 lúc 9:09

Công thức đó có ở nhiều chuyên đề về parabol rồi mà bạn.

Chứng minh như sau

Giả sử ta có parabol $y=ax^2+bx+c$

$y=a(x^2+\frac{b}{a}x)+c=a(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a}$

Nếu $a>0$ thì $y\geq \frac{4ac-b^2}{4a}$. Tức là $y_{\min}=\frac{4ac-b^2}{4a}$. Giá trị này đạt tại $x+\frac{b}{2a}=0\Leftrightarrow x=-\frac{b}{2a}$

Vậy điểm cực tiểu của đths có tọa độ $(\frac{-b}{2a}, \frac{4ac-b^2}{4a})$

Ngược lại $a< 0$ thì là cực đại và tọa độ như trên.

dũng nguyễn tiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 21:06

Theo đề, ta có: c=4

Theo đề, ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\-\dfrac{b^2}{16a}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a^2+80a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-20\\b=40\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 4 2018 lúc 16:22

Vì parabol đi qua ba điểm A, B, C nên ta có hệ phương trình:

Vậy (P): y = -x2 + 2x

Chọn C.