Tính \(A=\frac{1+\sqrt{11}}{2+\sqrt{11}}+\sqrt{\frac{2}{18-5\sqrt{11}}}\)
Tính A= \(\frac{1+\sqrt{11}}{2+\sqrt{11}}+\sqrt{\frac{2}{18-5\sqrt{11}}}\)
mọi người giúp em bài này với,em đang cần gấp ạ
bài 2:rút gọn các biểu thức sau
a)A=\(\sqrt{5-\sqrt{21}}+\sqrt{5+\sqrt{21}}\)
b)B=\(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
c)C=\(\left(1+\frac{11-\sqrt{11}}{1-\sqrt{11}}\right)\left(\frac{11+\sqrt{11}}{1+\sqrt{11}}+1\right)\)
d)D=\(\frac{\sqrt{2}}{\sqrt{2}-\sqrt{3}}-\frac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}\)
e)E=\(\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
a, \(\sqrt{2}A=\sqrt{10-2\sqrt{3.7}}+\sqrt{10+2\sqrt{3.7}}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{3}\right|+\left|\sqrt{7}+\sqrt{3}\right|\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{3}+\sqrt{7}=2\sqrt{7}\)
\(\Rightarrow A=\sqrt{14}\)
b, \(B=\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\)
\(=\sqrt{5}+\frac{\sqrt{5}}{2}=\frac{3\sqrt{5}}{2}\)
c, \(C=\left(1-\sqrt{11}\right)\left(\sqrt{11}+1\right)=1-11=-10\)
d, \(D=\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}{2-3}-\frac{\sqrt{2}\left(\sqrt{2}-\sqrt{3}\right)}{2-3}\)
\(=-2-\sqrt{6}+2-\sqrt{6}=-2\sqrt{6}\)
\(\left(1+\frac{11-\sqrt{11}}{1-\sqrt{11}}\right)\left(\frac{11+\sqrt{11}}{1+\sqrt{11}}+1\right)\)
a. \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
b. \(3\sqrt{\frac{9}{8}}-\sqrt{\frac{49}{2}}+\sqrt{\frac{25}{18}}\)
c. \(\left(1+\frac{5-\sqrt{5}}{1-\sqrt{5}}\right)\left(\frac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)
d. \(\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}\)
e. \(\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
f. \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
CỨU TUI VỚI <3 <3
a) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(\sqrt{9\cdot11}-\sqrt{9\cdot2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=3\cdot11-3\sqrt{22}-11+3\sqrt{22}\)
\(=33-11=22\)
b)\(3\sqrt{\frac{9}{8}}-\sqrt{\frac{49}{2}}+\sqrt{\frac{25}{18}}\)
\(=\frac{9}{\sqrt{8}}-\frac{7}{\sqrt{2}}+\frac{5}{\sqrt{18}}\)
\(=\frac{9}{2\sqrt{2}}-\frac{7}{\sqrt{2}}+\frac{5}{3\sqrt{2}}\)
\(=\frac{27-42+10}{6\sqrt{2}}\)
\(=-\frac{5}{6\sqrt{2}}\)
c)\(\left(1+\frac{5-\sqrt{5}}{1-\sqrt{5}}\right)\left(\frac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)
\(=\left(1-\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\frac{\sqrt{5}\left(\sqrt{5}+1\right)}{1+\sqrt{5}}+1\right)\)
\(=\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\)
\(=1-5=-4\)
\(\frac{\sqrt{11+\sqrt{5}}+\sqrt{11-\sqrt{5}}}{\sqrt{11+2\sqrt{29}}}-\sqrt{3-2\sqrt{2}}\)
TÍNH
\(=\frac{3,638140731+2,960393897}{4,665868581}-\sqrt{3-2\sqrt{ }2}=\frac{6,598534628}{4,665868581}-\sqrt{3-2\sqrt{ }2=1}\)
Tính nhanh:
\(\frac{3-3^2+3^3-3^4+...+3^{99}}{\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}}.\left(11-\sqrt{91}\right)\left(11-\sqrt{95}\right)\left(11+\sqrt{99}\right)\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)\left(11-\sqrt{113}\right)...\left(11-\sqrt{113}\right)\left(11-\sqrt{104}\right)\)
Đặt \(A=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)\left(11-\sqrt{113}\right)....\left(11-\sqrt{104}\right)\)
\(=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)....\left(11-\sqrt{121}\right)....\left(11-\sqrt{104}\right)\)
\(=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)....\left(11-11\right)....\left(11-\sqrt{104}\right)\)
\(=0\)
Do đó biểu thức trên đầu bài bằng 0
bạn ơi, trong dãy này không có số \(\sqrt{121}\)đâu
Thực hiện phép tính
a, \(\sqrt{12-3\sqrt{7}-\sqrt{12+3\sqrt{7}}}\)
b, \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)
c, \(2\sqrt{\frac{27}{4}}-\sqrt{\frac{48}{9}}-\frac{2}{5}\sqrt{\frac{75}{16}}\)
d , \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
a/ Đề sai
b/ \(\sqrt{125}-4\sqrt{45}+3\sqrt{2}-\sqrt{80}=5\sqrt{5}-12\sqrt{5}+3\sqrt{2}-4\sqrt{5}\)
\(=-11\sqrt{5}+3\sqrt{2}\)
c/ \(2\sqrt{\frac{27}{4}}-\sqrt{\frac{48}{9}}-\frac{2}{5}\sqrt{\frac{75}{16}}=2.\frac{3\sqrt{3}}{2}-\frac{4\sqrt{3}}{3}-\frac{2}{5}.\frac{5\sqrt{3}}{4}\)
\(=3\sqrt{3}-\frac{4\sqrt{3}}{3}-\frac{\sqrt{3}}{2}=\sqrt{3}\left(3-\frac{4}{3}-\frac{1}{2}\right)=\frac{7\sqrt{3}}{6}\)
d/ \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\cdot\sqrt{11}+3\sqrt{22}=33-3\sqrt{22}-11+3\sqrt{22}=22\)
Tính
\(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
\(\sqrt{\sqrt{11}+1}.\sqrt{\sqrt{11}-1}+\sqrt{10}\)
\(\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\left(\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)}{\left(\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}\right)\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)}\)
\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{5+3\sqrt{2}-\left(5-3\sqrt{2}\right)}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{3+\sqrt{2}-\left(3-\sqrt{2}\right)}\)
\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{6\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\)
\(=\frac{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{2\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\)
\(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
\(=\frac{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{2\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\)
\(=\frac{10+2\sqrt{7}-6-2\sqrt{7}}{2\sqrt{2}}=\sqrt{2}\)
\(\sqrt{\sqrt{11}+1}.\sqrt{\sqrt{11}-1}+\sqrt{10}=\sqrt{10}+\sqrt{10}=2\sqrt{10}\)
1) Khử mẫu các biểu thức dưới dấu căn rồi thực hiện phép tính:
\(2\sqrt{\frac{3}{20}}+\sqrt{\frac{1}{60}}-\sqrt{\frac{1}{15}}\)
2) Trục căn thức ở mẫu:
a) \(\frac{9}{\sqrt{3}}\)
b) \(\frac{12}{3-\sqrt{3}}\)
c) \(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
d) \(\frac{7\sqrt{3}-5\sqrt{11}}{8\sqrt{3}-7\sqrt{11}}\)
e) \(\frac{1-a\sqrt{a}}{1-\sqrt{a}}\)
f) \(\frac{1}{\sqrt{18}+\sqrt{8}-2\sqrt{2}}\)
g) \(\frac{1}{1+\sqrt{2}-\sqrt{3}}\)
h) \(\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}\)
a) Ta có:
5√15+12√20+√5515+1220+5
=√52.15+√(12)2.20+√5=√25.15+√14.20+√5=√255+√204+√5=√5+√5+√5=(1+1+1)√5=3√5=52.15+(12)2.20+5=25.15+14.20+5=255+204+5=5+5+5=(1+1+1)5=35
b) Ta có:
√12+√4,5+√12,512+4,5+12,5
=√12+√92+√252=√12+√9.12+√25.12=√12+√32.12+√52.12=√12+3√12+5√12=(1+3+5).√12=9√12=91√2=9.√22=9√22=12+92+252=12+9.12+25.12=12+32.12+52.12=12+312+512=(1+3+5).12=912=912=9.22=922
c) Ta có:
√20−√45+3√18+√72=√4.5−√9.5+3√9.2+√36.2=√22.5−√32.5+3√32.2+√62.2=2√5−3√5+3.3√2+6√2=2√5−3√5+9√2+6√2=(2√5−3√5)+(9√2+6√2)=(2−3)√5+(9+6)√2=−√5+15√2=15√2−√520−45+318+72=4.5−9.5+39.2+36.2=22.5−32.5+332.2+62.2=25−35+3.32+62=25−35+92+62=(25−35)+(92+62)=(2−3)5+(9+6)2=−5+152=152−5
d) Ta có:
0,1√200+2√0,08+0,4.√50=0,1√100.2+2√0,04.2+0,4√25.2=0,1√102.2+2√0,22.2+0,4√52.2=0,1.10√2+2.0,2√2+0,4.5√2=1√2+0,4√2+2√2=(1+0,4+2)√2=3,4√2
Bạn giải bài đâu vậy? Kiếm điểm hỏi đáp hở, Boy anime?
1) \(=\frac{2\sqrt{3}}{\sqrt{20}}+\frac{1}{\sqrt{60}}-\frac{1}{\sqrt{15}}=\frac{6\sqrt{60}+\sqrt{60}-4\sqrt{15}}{60}=\frac{\sqrt{15}\left(12+2-4\right)}{60}=\frac{\sqrt{15}}{6}\)
a) \(=\frac{9}{\sqrt{3}}=\frac{9\sqrt{3}}{3}\)
b) \(=\frac{12\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}=\frac{36+12\sqrt{3}}{9-3}=6+2\sqrt{3}\)
c) \(=\frac{\left(\sqrt{2}+1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{2+2\sqrt{2}+1}{2-1}=3+2\sqrt{2}\)
d) \(=\frac{\left(7\sqrt{3}-5\sqrt{11}\right)\left(8\sqrt{3}+7\sqrt{11}\right)}{\left(8\sqrt{3}-7\sqrt{11}\right)\left(8\sqrt{3}+7\sqrt{11}\right)}=\frac{217-9\sqrt{11}}{347}\)
e) \(=\frac{\left(1-a\sqrt{a}\right)\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}=\frac{1+\sqrt{a}-a\sqrt{a}-a^2}{1-a}=a+\sqrt{a}+1\)
f) \(=\frac{1}{3\sqrt{2}-2\sqrt{2}+\sqrt{8}}=\frac{\sqrt{2}-\sqrt{8}}{\left(\sqrt{2}+\sqrt{8}\right)\left(\sqrt{2}-\sqrt{8}\right)}=\frac{\sqrt{2}}{6}\)
g) \(=\frac{1-\sqrt{2}+\sqrt{3}}{1-\left(\sqrt{2}-\sqrt{3}\right)^2}=\frac{1-\sqrt{2}+\sqrt{3}}{2\sqrt{6}-4}=\frac{\left(1-\sqrt{2}+\sqrt{3}\right)\left(2\sqrt{6}+4\right)}{\left(2\sqrt{6}-4\right)\left(2\sqrt{6}+4\right)}\)
\(=\frac{2\sqrt{6}+4-4\sqrt{3}-4\sqrt{2}+6\sqrt{2}+4\sqrt{3}}{24-16}=\frac{\sqrt{2}+\sqrt{6}+2}{4}\)
f) \(=\frac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}=\frac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{2\sqrt{15}-6}\)
\(=\frac{\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{15}+6\right)}{\left(2\sqrt{15}-6\right)\left(2\sqrt{15}+6\right)}=\frac{2\sqrt{30}+6\sqrt{2}-6\sqrt{5}-6\sqrt{3}+10\sqrt{3}+6\sqrt{5}}{60-36}\)
\(=\frac{\sqrt{30}+3\sqrt{2}+2\sqrt{3}}{12}\)