Giải phương trình :
\(\frac{1001x^4+x^4\sqrt{2x^2+2002}+4x^2}{999}=2002\)
giải phương trình :\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
Đk: \(\forall x\in R\)
Ta có:\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=\sqrt{1+2020^2+2.2020+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(1+2020\right)^2+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\frac{2021^2-2020}{2021}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=2021\)
Lập bảng xét dầu
x -2 1
x - 1 - | - 0 +
x + 2 - 0 + | -
Xét các TH xảy ra :
TH1: x \(\le\)-2 => pt trở thành: 1 - x - x - 2 = 2021
<=> -2x = 2022 <=> x = -1011 (tm)
TH2: \(-2< x\le1\) => pt trở thành: 1 - x + x + 2 = 2021
<=> 0x = 2018 (vô lí) => pt vô nghiệm
TH3: \(x>1\) => pt trở thành: x - 1 + x + 2 = 2021
<=> 2x = 2020 <=> x = 1010 (tm)
Vậy S = {-1011; 1010}
Giải phương trình \(X^3+X^2+2X=\frac{4\sqrt{5}}{15}\left(X^2+2\right)\sqrt{X^4+4}\)
Giải phương trình:
\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
Đk \(x+3\ge0\Leftrightarrow x\ge-3\)
Đặt \(\sqrt{\frac{x+3}{2}}=t+1\left(t\ge-1\right)\Leftrightarrow x+3=2\left(t+1\right)^2\Leftrightarrow2t^2+4t=x+1\)
Ta có hệ phương trình:
\(\hept{\begin{cases}2x^2+4x=t+1\\2t^2+4t=x+1\end{cases}}\)
Hệ phương trình đối xứng loại 2 :). Em làm tiếp nhé:)
giải phương trình \(4\sqrt{2x+8}+3\sqrt[3]{4x-8}\left(x-1\right)=2x^2+12x-14\)
Giải phương trình: \(\begin{cases}2x^4+3x^3+45x=27y^2\\2y^2-x^2+1=\sqrt{3y^4-4x^2+6y^2-2x^2y^2}\end{cases}\)
giải các phương trình sau:
a. \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\)
b. \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c. \(\sqrt{\dfrac{3x-2}{x+1}}=3\)
Lời giải:
a. ĐKXĐ: $x\geq 0$
$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$
$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$
$\Leftrightarrow 13\sqrt{2x}=28$
$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$
$\Leftrightarrow 2x=\frac{784}{169}$
$\Leftrightarrow x=\frac{392}{169}$
b. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$
PT $\Leftrightarrow \frac{3x-2}{x+1}=9$
$\Rightarrow 3x-2=9(x+1)$
$\Leftrightarrow x=\frac{-11}{6}$ (tm)
Giải phương trình:
\(\frac{\left(6x^4+4x^3-12x^2+9\right)\left(2x^3+7\right)-3\left(4x^3+5\right)\sqrt{6x^4+4x^3-12x^2+9}}{\sqrt{\left(6x^4+4x^3-12x^2+9\right)^3}-18x^3-9}=1\)
=))
Giải phương trình: \(\hept{\begin{cases}2x^4+3x^3+45x=27y^2\\2y^2-x^2+1=\sqrt{3y^4-4x^2+6y^2-2x^2y^2}\end{cases}}\)
\(_{\hept{2y^2}-x^2+1=\sqrt{3y^4-4x^2+6y^2-2x^2y^2\left(2\right)}}2x^4+3x^3+45x=27x^2\left(1\right)\)
ĐK: \(2y^2+1\ge1\)
Phương trình 2 tương đương:
\(\left(2y^2-x^2+1\right)^2=3y^4-4x^2+6x^2-2x^2y^2\)
\(\Leftrightarrow y^4+2x^2-2x^2y^2+x^{2+2}+1-2y^2=0\)
Các lập phương được cấu tạo từ \(x^2y^2\)nên :
\(\Leftrightarrow\left(y^4-2x^2y^2+y^4\right)-2\left(y^2-x^2\right)+1=0\)
Đảo chiều:
\(\Leftrightarrow\left(y^2-x^2-1\right)^2=0\)
\(\Leftrightarrow y^2=x^2+1\left(3\right)\)
Thế \(x^2+1=y^2\)vào phương trình (1) ta có :
\(2x^4+3x^3+45x=27\left(x^2+1\right)\)
\(\Leftrightarrow2x^4+3x^3-27x^2+45x-27=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)\left(2x^3+6x^2-18x+18\right)=0\)
Chuyển: \(x=\frac{3}{2}\Rightarrow y=\frac{\sqrt{13}}{2}\)
\(\Leftrightarrow[x=-\sqrt[3]{16-\sqrt[3]{4}}-1\Rightarrow y=\sqrt{\left(\sqrt[3]{16}+\sqrt[3]{4}+1\right)^2+1}\)
giải phương trình
a) \(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-\sqrt{2x-1}}=4\)
b) \(4x^2+3x+3=4x\sqrt{x+3}+2\sqrt{2x-1}\)
c) \(\sqrt{x-4}+\sqrt{6-x}=x^2-11x+27\)
d) \(\sqrt{13x^2-6x+10}+\sqrt{5x^2-13x+\frac{17}{2}}+\sqrt{17x^2-48x+36}=\frac{1}{2}\left(36x-8x^2-21\right)\)
e) \(\sqrt{\frac{6}{3-x}}+\sqrt{\frac{8}{2-x}}=6\)