Cho \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) (\(abc\ne0\)). CMR: \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=abc\)
Cho \(a^3+b^3+c^3=3abc\)và \(abc\ne0;a+b+c=0\)
CMR \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=0\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0;abc\ne0\)CMR
\(\left(a^3b^3+b^3c^3+c^3a^3\right)\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=9abc\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0;abc\ne0\).CMR:
\(\left(a^3b^3+b^3c^3+c^3a^3\right)\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=9abc\)
Cho a,b,c là các số thực thỏa mãn a,b,c khác 0 và \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Chứng minh rằng:
\(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=abc\)
https://olm.vn/hoi-dap/detail/81117789731.html
bạn tham khảo
Ta có a+b+c=0 => \(a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3ab\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\)
\(a^6+b^6+c^6=\left(a^3\right)^2+\left(b^3\right)^2+\left(c^3\right)^2=\left(a^3+b^3+c^3\right)^2-2\left(a^3b^3+b^3c^3+c^3a^3\right)\)
\(ab+bc+ca=0\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Do đó: \(a^6+b^6+c^6=\left(3abc\right)^2-2\cdot3a^2b^2c^2=3a^2b^2c^2\)
Vậy \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{3a^2b^2c^2}{3abc}=abc\left(đpcm\right)\)
Cho a , b , c là các số thực dương thỏa : \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Chứng minh : \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=abc\)
DO \(a+b+c=0\)
=>\(a^3+b^3+c^3=3abc\)
DO \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
=> \(ab+ac+bc=0\)
TA CÓ \(\left(a^3+b^3+c^3\right)^2\)
= \(a^6+b^6+c^6+2\left(a^3b^3+b^3c^3+a^3c^3\right)=9a^2b^2c^2\)
DO \(ab+ac+bc=0\)
=> \(a^3b^3+b^3c^3+a^3c^3=0\)
=> \(a^6+b^6+c^6=9a^2b^2c^2\)
=> \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{9a^2b^2c^2}{3abc}=3abc\)
Ta có\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) nên ab + bc + ca = 0. Kết hợp với a + b + c = 0 ta được a2 + b2 + c2 = 0.
Sử dụng phân tích: a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca) trong điều kiện a + b + c = 0 và a2 + b2 + c2 = 0 ta được:
nên a3 + b3 + c3 = 3abc. (1)
và a6 + b6 + c6 = 3a2b2c2. (2)
từ (1) và (2) suy ra đpcm.
Cho a,b,c là các số thực dương thõa mãn :
a + b + c = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Chứng minh :
\(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=abc\)
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow ab+bc+ca=0\)
Mà \(\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow a^2+b^2+c^2=0\)
Ta lại có:
\(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{\left(a^6+b^6+c^6-3a^2b^2c^2\right)+3a^2b^2c^2}{\left(a^3+b^3+c^3-3abc\right)+3abc}\)
\(=\frac{\left(a^2+b^2+c^2\right)\left(a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\right)+3a^2b^2c^2}{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}\)
\(=\frac{3a^2b^2c^2}{3abc}=abc\)
Cho a,b,c >0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)>=1
Cmr: ∑\(\frac{1+b}{\sqrt{ab+c}}>=3\sqrt[6]{abc}\)
Cho a, b, c>0. CMR:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)
cho a,b,c>0 CMR:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)
Ta có:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)
\(\Leftrightarrow\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le1\)
Áp dụng BDT \(ab\left(a+b\right)\le a^3+b^3\)thì ta có:
\(\frac{1abc}{a^3+b^3+abc}\le\frac{abc}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)
Tương tự ta có:
\(\hept{1\begin{cases}\frac{abc}{b^3+c^3+abc}\le\frac{a}{a+b+c}\\\frac{abc}{c^3+a^3+abc}\le\frac{b}{a+b+c}\end{cases}}\)
Cộng 3 cái trên vế theo vế ta được
\(\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)
\(\Rightarrow\)ĐPCM
demonstrate that \(a^3+b^3\ge ab\left(a+b\right)\)