Tìm giá trị nhỏ nhất của A=x^2-2x+y^2-4y+6
1.Tìm giá trị lớn nhất
A=4x-x^2-3
B=-x^2-4x-2
C=2x-2x^2-5
D=-2x^2-3x+5
2.Tìm giá trị nhỏ nhất
A=x^2-2x+y^2-4y+6
B=3x^2+y^2-2xy-7
C=(x-1)(x+2)(x+3)(x+6)
D=x^2+y^2-4y+6
tìm giá trị nhỏ nhất hoặc giá trị lớn nhất
A=x^2-2x+2x+y^2-4y+7
B=5-x^2+2x-4y^2-4y
giúp mình với please^~^
tìm giá trị lớn nhất của biểu thức
a) 2x-2xy-2x2-y2
tìm giá trị nhỏ nhất của biểu thức
a) (x-1)(x+2)(x+3)(x+6)
b) 5x2+y2-6x+5y+1
c) x2-2x+y-4y+6
Tìm giá trị nhỏ nhất của biểu thức:
a) ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )
b) x mũ 2 - 2x + y - 4y + 6
a) Ta có:
\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left[x^2+5x-6\right]\left[x^2+5x+6\right]\)
Đặt x2 + 5x = t. Biểu thức đó là:
\(\left[t-6\right]\left[t+6\right]\)
\(=t^2-36\ge-36\forall t\)
Dấu "=" xảy ra \(\Leftrightarrow t=0\)
\(\Leftrightarrow x^2+5x=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy, Min(x - 1)(x + 2)(x + 3)(x + 6) = -36 \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Mình trả lời câu a trước nha:
Đặt A=(x-1) (x+2) (x+3) (x+6)
A=((x-1)(x+6)) ((x+2)(x+3))
A=(x^2+5x-6)(x^2+5x+6)
Đặt a=x^2+5x =>A=(a-6)(a+6)
A=a^2-36
Vì a^2 luôn luôn lớn hơn hoặc bằng 0
=> GTNN là -36
Ta có:
\(A=x^2+y^2+xy-2x-4y+2016\\ =\left(x+\dfrac{y}{2}-1\right)^2+\dfrac{3}{2}\left(y-1\right)^2+\dfrac{4027}{2}\\ \ge\dfrac{4027}{2}\)
Dấu bằng xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)
1/Tìm giá trị nhỏ nhất của đa thức sau:
x^2-2x+y^2-4y+6
x^2-2x+y^2-4y+6
=(x)^2-2(x)(1)+(1)^2-1+(y)^2-2(y)(2)+(2)^2-4+6
=(x-1)^2+(y-2)^2-1-4+6
=(x-1)^2+(y-2)^2+1
ta có
(x-1)^2 >hoặc=0
(y-2)^2>hoặc=0
=>(x-1)^2+(y-2)^2 >hoặc=0
<=>(x-1)^2+(y-2)^2+1 >hoặc= 1
Dấu"=" xảy ra
<=>(x-1)^2=0 và (y-2)^2=0
<=>x-1=0 và y-2=0
<=>x=1 và y=2
Vậy GTNN của đa thức trên là 1 khi x=1;y=2
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
Tìm giá trị nhỏ nhất(GTNN) của đa thức sau: A(x)= x2 - 2x + y2 + 4y + 6
A(x) = x^2 -2x +y^2 +4y +6 = x^2-2x +y^2 +4y +1^2 +2^2 +1
=(x^2 -2x.1 + 1^2) + ( y^2 +2.2y+2^2) +1
=(x-1)^2+ ( y+2)^2 +1
mà (x-1)^2 >_ 0 với mọi x
(y+2)^2 >_0 với mọi y
=> GTNN của A(x) là 1
Tick cho tớ nha
tìm giá trị nhỏ nhất của x^2 + y^2 - 2x + 4y + 2015
Lời giải:
$A=x^2+y^2-2x+4y+2015$
$A=(x^2-2x+1)+(y^2+4y+4)+2010$
$=(x-1)^2+(y+2)^2+2010\geq 2010$
$\Rightarrow A_{\min}=2010$
Giá trị này đạt tại $x-1=y+2=0$
$\Leftrightarrow x=1; y=-2$