Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hồ Thúy Anh
Xem chi tiết
Châu Ngọc Bảo
5 tháng 5 2016 lúc 16:33

Nếu một trong các số \(x+y-z;y+z-x;z+x-y\) bằng 0 thì cả 3 số đều bằng 0 và dẫn đến \(x=y=z=0\), mâu thuẫn

Từ giả thiết ta có : \(\begin{cases}x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\\y\log z\left(z+x-y\right)=z\log y\left(x+y-z\right)\\z\log x\left(x+y-z\right)=x\log z\left(y+z-x\right)\end{cases}\)

Xét đẳng thức thứ nhất ta có :

                                               \(x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\Leftrightarrow x\log y=y\log x.\frac{z+x-y}{y+z-x}\)                                                               \(\Leftrightarrow x\log y+y\log x=y\log x\left(\frac{z+x-y}{y+z-x}+1\right)\Leftrightarrow x\log y+z\log x=y\log x\frac{2z}{y+z-x}\)

Biến đổi tương tự với đẳng thức thứ hai ta có :

                                             \(y\log z+z\log y=z\log y\frac{2z}{z+z-y}\)

Ta thấy rằng : \(x^y.y^x=y^z.z^y\Leftrightarrow x\log y+y\log x=y\log z+z\log y\)

Do đó ta cần có :

                    \(y\log x\frac{2z}{y+z-x}=z\log y\frac{2z}{z+x-y}\Leftrightarrow y\log x\left(z+x-y\right)=x\log y\left(y+z-x\right)\), đúng

Do đó ta được : \(x^yy^x=y^z.z^y\)

Chứng minh tương tự ta có : \(y^zz^y=z^x.x^z\)

=> Điều phải chứng minh

 

nguyễn thị hà my
Xem chi tiết
tfboyswoainiiloveyou
Xem chi tiết
Phùng Minh Quân
21 tháng 10 2018 lúc 9:40

\(x+y+z=6\)

\(\Leftrightarrow\)\(\left(x+y+z\right)^2=36\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+2xy+2yz+2zx=36\)

\(\Leftrightarrow\)\(2xy+2yz+2zx=24\)

\(\Leftrightarrow\)\(2xy+2yz+2zx=2x^2+2y^2+2z^2\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow}x=y=z}\)

Mà \(x+y+z=6\)\(\Rightarrow\)\(x=y=z=\frac{6}{3}=2\)

Vậy \(x=y=z=2\)

Chúc bạn học tốt ~ 

tth_new
21 tháng 10 2018 lúc 9:44

ĐK: x + y + z = 6; \(x^2+y^2+z^2=12\)

Áp dụng BĐT Bunhiacopxki cho hai bộ số (1;1;1) và (x;y;z).Ta có:

\(\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

Thay \(x+y+z=6\) và ta có:

\(3\left(x^2+y^2+z^2\right)\ge36\Leftrightarrow x^2+y^2+z^2\ge12\) (tmđk)

Dấu "=" xảy ra khi \(x=y=z=\frac{6}{3}=2\) (*)

Từ (*) suy ra  x=y=z=2

nguyễn Thái Sơn
Xem chi tiết
Nguyễn Minh Đăng
24 tháng 10 2020 lúc 14:24

Theo bất đẳng thức 3 biến đối xứng thì ta có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Dấu "=" xảy ra khi: x = y = z

Mà ta thấy: \(\frac{\left(x+y+z\right)^2}{3}=x^2+y^2+z^2=12\)

\(\Rightarrow x=y=z=2\)

Vậy x = y = z = 2

Khách vãng lai đã xóa
nguyễn Thái Sơn
24 tháng 10 2020 lúc 15:59

tớ  chưa học bđt

Khách vãng lai đã xóa
nguyễn Thái Sơn
25 tháng 10 2020 lúc 8:38

tớ làm được cách khác rồi nha các bạn . tớ cám ơn mn đã dành thời gian để trả lời câu hỏi này

Khách vãng lai đã xóa
Cao Khánh Chi
Xem chi tiết
Thu Trang Trần
Xem chi tiết
Sherry
23 tháng 1 2017 lúc 13:51

-Có |x| lớn hơn hoặc bằng 0 với mọi y => y-2017 lớn hơn hoặc bằng 0 với mọi y => y lớn hơn hoặc bằng 2017

-Có |y| lớn hơn hoặc bằng 0 với mọi z => z-2017 lớn hơn hoặc bằng 0 với mọi z => z lớn hơn hoặc bằng 2017

-Có |z lớn hơn hoặc bằng 0 với mọi x => x-2017 lớn hơn hoặc bằng 0 với mọi x => x lớn hơn hoặc bằng 2017

=> |x| = y-2017=x => y-x=2017

=> |y| = z-2017=y => z-y=2017

=> |z| = x-2017=z => x-z=2017

=> y-x+z-y+x-z=2017

=> 0=2017 (vô lý)

=> Không có x;y;z thoả mãn

k nha

Lưu Thảo Ngân
10 tháng 7 2017 lúc 18:46

==" tớ cx làm thế đấy trang ơi, như bạn Sherry kìa, nhưng tiếc là T^T thiếu dấu bằng x lớn hơn hoặc bằng (= =+) thế là khỏi có điểm

Thu Trang Trần
Xem chi tiết
Tạm biệt K39A
Xem chi tiết
Vũ Tú Quyên
6 tháng 11 2017 lúc 20:11

Áp dụng bđt bunhia cho 2 bộ số (1 ; 1 ; 1) và (x ; y ; z) ta có: 

(1 + 1 + 1).(x² + y² + z²) ≥ (x + y + z)² 

<=> 3(x² + y² + z²) ≥ 36 < do x+y+z=6 theo đề bài > 

<=> x² + y² + z² ≥ 12 => đpcm 

Dấu "=" xảy ra <=> x = y = z = 2 

----------------------------- 

2) xy/z + yz/x + zx/y ≥ x + y + z với x,y,z là các số thực dương 

Áp dụng bđt cô si cho 2 số thực dương ta có: 

xy/z + yz/x ≥ 2y 
yz/x + zx/y ≥ 2z 
xy/z + zx/y ≥ 2x 

Cộng vế với vế 3bđt trên ta được : 

xy/z + yz/x + zx/y ≥ x + y + z => đpcm 

Dấu "=" xảy ra <=> x = y = z 

----------------------------------- 

3) x² + 5y² - 4xy + 2x - 6y +3 > 0 với mọi x , y 

<=> (x² - 4xy + 4y²) + (2x - 4y) + 1 + (y² -2y + 1) + 1 > 0 

<=> [(x - 2y)² + 2(x - 2y) + 1] + (y - 1)² + 1 > 0 

<=> (x - 2y + 1)² + (y - 1)² + 1 > 0 => luôn đúng với mọi x,y 

=> đpcm 

Đặng Nguyễn Thục Anh
Xem chi tiết
Lê Nhật Khôi
19 tháng 10 2017 lúc 18:41

Vì x+y+z=6 và \(x^2+y^2+z^2=12\)

Ta có \(x^2+y^2+z^2-x+y+z=12-6\)

Rút gọn: \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)=6\)

=> \(x+y+z=x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\)

Tìm x \(\Rightarrow x\left(x-1\right)=x\Rightarrow x-1=1\Rightarrow x=2\)

Tìm y \(\Rightarrow y\left(y-1\right)=y\Rightarrow y-1=1\Rightarrow y=2\)

Tìm z \(\Rightarrow z\left(z-1\right)=z\Rightarrow z-1=1\Rightarrow z=2\)

Vậy \(x=y=z=2\)

Trần Hữu Ngọc Minh
19 tháng 10 2017 lúc 18:36

\(\hept{\begin{cases}x^2+y^2+z^2=12\\x+y+z=6\end{cases}}\)

Ta có \(\left(x+y+z\right)^2=36\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=36\)

\(\Leftrightarrow12+2xy+2yz+2xz=36\)

\(\Leftrightarrow2xy+2yz+2xz=24\Leftrightarrow xy+yz+xz=12\)

\(\Rightarrow x^2+y^2+z^2=xy+yz+xz=12\)

Mặt khác ta có \(x^2+y^2+z^2\ge xy+yz+xz\)

Dấu \(=\)xảy ra khi \(x=y=z\)

Vậy \(x=y=z=2\)

Lê Nhật Khôi
19 tháng 10 2017 lúc 19:39

Bài bn Trần Hữu Minh đúng rùi