Nguyễn Hồ Thúy Anh

Cho x, y, z, a là các số thực dương thỏa mãn dãy đẳng thức sau :

\(\frac{x\left(y+z-x\right)}{\log x}=\frac{y\left(z+x-y\right)}{\log y}=\frac{z\left(y+x-z\right)}{\log z}\)

Chứng minh rằng \(x^y.y^x=y^z.z^y=z^x.x^z\)

Châu Ngọc Bảo
5 tháng 5 2016 lúc 16:33

Nếu một trong các số \(x+y-z;y+z-x;z+x-y\) bằng 0 thì cả 3 số đều bằng 0 và dẫn đến \(x=y=z=0\), mâu thuẫn

Từ giả thiết ta có : \(\begin{cases}x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\\y\log z\left(z+x-y\right)=z\log y\left(x+y-z\right)\\z\log x\left(x+y-z\right)=x\log z\left(y+z-x\right)\end{cases}\)

Xét đẳng thức thứ nhất ta có :

                                               \(x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\Leftrightarrow x\log y=y\log x.\frac{z+x-y}{y+z-x}\)                                                               \(\Leftrightarrow x\log y+y\log x=y\log x\left(\frac{z+x-y}{y+z-x}+1\right)\Leftrightarrow x\log y+z\log x=y\log x\frac{2z}{y+z-x}\)

Biến đổi tương tự với đẳng thức thứ hai ta có :

                                             \(y\log z+z\log y=z\log y\frac{2z}{z+z-y}\)

Ta thấy rằng : \(x^y.y^x=y^z.z^y\Leftrightarrow x\log y+y\log x=y\log z+z\log y\)

Do đó ta cần có :

                    \(y\log x\frac{2z}{y+z-x}=z\log y\frac{2z}{z+x-y}\Leftrightarrow y\log x\left(z+x-y\right)=x\log y\left(y+z-x\right)\), đúng

Do đó ta được : \(x^yy^x=y^z.z^y\)

Chứng minh tương tự ta có : \(y^zz^y=z^x.x^z\)

=> Điều phải chứng minh

 

Bình luận (0)

Các câu hỏi tương tự
Hà Thu My
Xem chi tiết
Đinh Hà Mỹ Duyên
Xem chi tiết
Nguyễn Kiều Yến Nhi
Xem chi tiết
Lê Đỗ Bảo Quyên
Xem chi tiết
Phạm Thị Thúy Giang
Xem chi tiết
Nguyễn Hồ Kim Trang
Xem chi tiết
ha cam
Xem chi tiết
Mai Anh
Xem chi tiết
Lê Đỗ Bảo Quyên
Xem chi tiết